OpenDSS Primer
Program Revision: 7.6 September 2012

CPE' ELECTRIC POWER
o
RESEARCH INSTITUTE

New User Primer

The Open Distribution System Simulator™
(OpenDSS)

Jason Sexauer
OpenDSS User

Page 1 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Page 2 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

License

Copyright (c) 2008-2012, Electric Power Research Institute, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the Electric Power Research Institute, Inc., nor the names
of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY Electric Power Research Institute, Inc., "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Electric Power Research Institute, Inc., BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Page 3 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Page 4 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Table of Contents

LICENSE.......ituiieniiieniirneteecetnseisansteseressesnssssnsssassssasssssssssssessssssnsssassssassssnssssssessssssnssssnsssnssssnsessssssnssssnssns 3
TABLE OF CONTENTS ...cuiiiuiiitniieniiieniiennernesssnnsisnstassssassssssessssssnssssnsssasssssssssnsessssssnssssnsssassssassssnsessssssnssss 5
FIGURES ... itutiieuieienieteeteeeteereaserenseressesnssesssssssssessssensersssessssssnssssssssssssensssensessssesnssssnsssassssnsessnsssnsssnnsne 7
WHAT IS OPENDSS? ... ieeiiieeieieitteeteeetneerenserenseresierssessssssnsssenssressersssesssssssssssssssnsssensersssesnssssnsesnssssnsssanne 8
A N T N -3 8
A BRIEF HISTORY 1utuuieeieetittitieeeseeeettttteeeeeeeetetatanaaseeessssssnnnnsseeessssssnnnseeessssssnnnnssesessssssnsnnseeessssssnnnnneesnnseeeeesnsens 9
THE PURPOSE OF THIS DOCUMENT ..ieitieiiieieieieieieeeseseeesessesssssesssesesasesesssnsnsnnsnsnsnssssssnnsssnsnsssssnsssssnsssssnsssssnsssnsnnene 9
THE OPENDSS CIRCUIT IMODELcccuiiteiieniiinniinnncienieresiersssssnsssnsssssssssssessssssnsssssssssssssnssssnssssssssnssssnsssnns 10
BUSES ettt ettt ettt ettt et e e et et ettt e e ettt e eeeta—eetat.eettaaeeaan—ataanatrtneteraneeranteeertnn aeeerrtaeeerrnaaeeranns 10
POWER DELIVERY ELEMENTS «.eetvtutueeeeeeeterttuneeeeeeerersstnnaesesessssssnneseessssssssnnesessssssssnnsesesssssssssnnaesessssssssnnnneesesens 10
POWER CONVERSION ELEMENTS 1vutuuieeeeeittutueeeeererersnsneeeeeesesssssnnaesesssessssnnaeesssssssssnnsesessssssssnnmeesessssssssnnnesesssens 11
SUPPORT ELEMENTS. .. eetttttttueeeeeeeeettuuieseeeereesssnaaseseessssssnnnseeeesssssssnnnsesessssssssnnseeesssssssssnnsesesssssssnnnseesessssssessrnnn 12
USING THE OPENDSS GUIccuieeiiinirinerenierencrennereesseaseressersssersssssnssssssssassssssesssssssssssnsssnssssnsssansesansssnnes 13
THE USER INTERFACE 1eeteieieieieieieieiesesesesesesessssssesssssssasasesasasssssssssssssssssssnsssssnssnsnssesens 14
VVORKFLOW ..tutuuuuuununnnnnnnnnnsssesesesssereseseeeeeeees nannsannssssssnnn 15
THE BASICS OF THE OPENDSS SCRIPTING LANGUAGE......ccccttuiitueiiinnnienieieniernnissncrnssssassssssessssesnssssnsssnns 18
COMMAND SYNTAX 11tueeeeereettuuuieeeeeeerersssieeeeeessssssssaaesesssssssuneeeesssssssssnmaesessssssssnmmeesessssssnsmmeesessssssssssaeeesssseseens 18
COMMAND VERBS .tttuueeeeeertettttieeeeeeseeststateeeeessssssssnaaesessssssssnneesessssssssnsmesessssssssnnmeesessssssnsnasesessssssssnnneesnsneeseees 18
P A RAMETERS ... teeeeeeertuttueeeseeererestnaaeeeeeeassssnnaseeessssssnnnsseesssssssnnsnseeesssssssnnnsseeessssssnnnnseeessssssnnnassessnseeessssssnnnnns 19
COMMENTS e et teetttttteeeseeeeesastaaaeeeesessstaneaseeesssssannseseessssssnnnsseesssssssnnnssseesssssssnnseseeessssssnnneseeesssseessssssnnneeseens 20
IMIULTI=LINE COMMANDS ..ettttiiieeeieeeeeeteeeeeeeeieeeeetesesesesesesesesesasesasssssssssassssssssssssssssssssssssssssssssssssnssssssssnnsssnsnnnnns 20
INCLUDING EXTERNAL FILES c.eiiiiiiiiiiieeiiiie et i e e e eeeeeeeeeeeesesesesese s e s e s e s e s e s a s aaaansanssnsssssnsssnsnsssnsssssnsssssnsnsasasarnnnns 20
WV ORKFLOW 1uteitiieeettieeeetneesestneeessnneesesnnsesesaneesssneesasansesssnneesssnnsesssnsesesnneeessnnsessssnsessssneesssnneessnnssneesssnneessnnns 21
EXAMPLE SCRIPT «.iieittttieieeeeetetttieeeeeeeeeeeauaaaeeeeeseasraaaeeeesessssanaeseeesssssssasnseesssssssannssessssssssnnaseessssesssesssrnnnnns 22
AN INTRODUCTION TO THE COM INTERFACEc.ceueteuteerrereecreeencencrassesssnssessrassessesssassesssnssesessssassenssas 24
STARTING OUT WITH THE COM INTERFACE.....uutuuieeeeerettrtnieeeeereeestnniaeseesssssssnaeesesessssnnnesessssssssnssesessssssssnnsnenens 24
THE TEXT INTERFACE .etvtttuueeseeeeeetssueiaseeessssssnnnnasesesssssssnnsesesssssssssnsseseesssssssnneseeesssssssnnsseesssssssnnnnseesssssssnsennnnn 25
INTRODUCTION TO THE CIRCUIT INTERFACEettttttteieitieeeeeeeeeeeeeseeesesesesesesesesesesesasasasasasssssssnsnsssnssnsnnsssnnnsnsnsnssrnnnne 26
INTRODUCTION TO THE SOLUTION INTERFACE.....cceititttiieieeeeeeeeeeieeeeeeesesesesesesesesesesesasesasasnsnnssnsnsnsnnnsnsnnnnnsnsnsnsnnnnnne 27
EXAMPLE IN VISUAL BASIC....eettieiitieeeiiie e ettee e et eeetteeeeetteeeeateeesesteesasaneesasnnsesannneesssnneessnnnesesnnsesssnnessssnnsesnnnns 28
EXAMPLE IN IMIATLAB ..ottt ettt e et e ettt e e e et e e e saa e e e eata e e s san e esannsesesnnseessnneeassnnsesnsnneesnnnnnennes 30
EXAMPLE IN PYTHON ..1tttueieeeeetititiieeeeeeeeettstteeeeeeesesssanaeseessessssnnnesessssssssnnsasessssssssnnnaesessssssssnnnesessssssssnnnnnsnnnnns 32
ADDITIONAL RESOURC CES......cccccttuereirentenerenteecrecescrssressesssassssssssssssssssassssssnssssssassassssssassssssnssssessssassanssas 34
VWHERE TO GO FROM HERE? ..uuuuuuuuuuuusussensssessssssssssssssssssssssesessssseseseeserereseseseseeesssesens 34
REFERENCE RESOURCES ...uueeeveertuttieeeeeeeeessssnsaeseessssssunseseesssssssnnnaeseesssssssnnseseesssssssnnneesessssssssnnaesessssssssnnnaeseesnns 35
AADDITIONAL HELP. ... uuuuuuuuuuunueuuuunenunsssassssssrsssssssssssssssssssresssssssssssssssssssssssssssssssssssssesesersrerererereeererereeeeesnnnnanssnnn 35

Page 5 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Page 6 of 35

OpenDSS Primer

Program Revision: 7.6 September 2012
Figures

FIGURE 1: BUS DEFINITIONcccectrrireruerteneeeesessesessessessessessassesessessessessassessessesessessasesssessesessassssesssssasnes 10
FIGURE 2: POWER DELIVERY ELEMENT DEFINITION........ccceeeetretreersesessesseseeseesessessesessessessessasassessessasnes 11
FIGURE 3: POWER CONVERSION ELEMENT DEFINITION........cceetretrereereeerscseeseeseesesessesessessesssssssssseenes 11
FIGURE 4. THE OPENDSS USER INTERFACEceceeueeeeererueeseesenesessssesssssessesessessessssssssssessessensesssnssnssnes 14
FIGURE 5. VOLTAGE VISUALIZATION FOR A LINE ELEMENTcccvvtrerrerreresrenensensesesssssessessesseesssaesaes 16
FIGURE 6. VOLTAGE PROFILE FOR A FEEDER........ccueetiitiereerenteesessessessessessssssessessesssssssessessensenssnsssesses 16
FIGURE 7. LINES LOSSES FOR A FEEDERc.ceceeueeuireirerenensensesessesessessessessesssessessesssssessssessessessenssnesnes 17
FIGURE 8. EXAMPLE CIRCUIT......ccccerueruereeseeeesesseseeseesessessessessasessessessessassessessesessessessassessesessassasssssssesnes 22

Page 7 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

What is OpenDSS?

AT A GLANCE

The Open Distribution System Simulator (OpenDSS, or simply, DSS) is a comprehensive electrical
system simulation tool for electric utility distribution systems. OpenDSS refers to the open-
source implementation of the DSS. It is implemented as both a stand-alone executable program
and an in-process COM server DLL designed to be driven from a variety of existing software
platforms. The executable version has a basic text-based user interface on the solution engine to
assist users in developing scripts and viewing solutions.

The program supports nearly all RMS steady-state (i.e., frequency domain) analyses commonly
performed for utility distribution systems planning and analysis. In addition, it supports many
new types of analyses that are designed to meet future needs, many of which are being dictated
by the deregulation of utilities worldwide and the advent of the “smart grid”. Many of the
features found in the program were originally intended to support distributed generation
analysis needs. Other features support energy efficiency analysis of power delivery, smart grid
applications, and harmonics analysis. The DSS is designed to be indefinitely expandable so that it
can be easily modified to meet future needs.

Another major strength of OpenDSS is in its “quazi-static” solution modes which lend
themselves well to sequential time simulations, like analyzing how a circuit will perform over an
entire year. The program has several built-in solution modes, such as

Snapshot Power Flow
Daily Power Flow
Yearly Power Flow
Harmonics

e Dynamics

e Fault study

e Monte Carlo Fault study
e And others ...

These modes were added as the program evolved to meet the analysis needs of specific projects
the authors were involved with. However, the program was designed with the recognition that
developers would never be able to anticipate everything users will want to do with it. A
Component Object Model (COM) interface was implemented on the in-process server DLL
version of the program to allow knowledgeable users to use the features of the program to
perform new types of studies.

Through the COM interface, the user is able to design and execute custom solution modes and
features from an external program and perform the functions of the simulator, including
definition of the model data. Thus, the DSS could be implemented entirely independently of any
database or fixed text file circuit definition. For example, it can be driven entirely from a MS
Office tool through VBA, or from any other 3" party analysis program that can handle COM.
Users commonly drive the OpenDSS with the familiar Mathworks MATLAB program, Python, C#,
R, and other languages. This provides powerful external analytical capabilities as well as
excellent graphics for displaying results.

Page 8 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

A BRIEF HISTORY

Development of the OpenDSS program began in April 1997 at Electrotek Concepts, Inc. At that
time the program was simply called “DSS” for Distribution System Simulator. Roger Dugan was
the principal author of the software supported shortly thereafter by Tom McDermott. The two
comprised the development team until late 2001 when Tom left Electrotek. Roger continued
maintaining and evolving the program alone until recently when Tom again became part of the
development team through the OpenDSS project. The DSS had been acquired by EPRI Solutions
in 2004, which was united with EPRI in 2007. In 2008, EPRI released the software under an open
source license to cooperate with other grid modernization efforts active in the Smart Grid area.

The program’s heritage is closer to a harmonic flow analysis program, or even a dynamics
program, than a typical power flow program. One of the most visible products of this
representation is the somewhat “back seat” role buses play in the model: while in most power
flow programs, buses are the central element on which everything else is built, buses are
dynamically created as needed in OpenDSS. This may seem a strange place to start designing a
tool that will be used mostly for power flow studies, but it gives the tool great modeling
flexibility, particularly for accommodating all sorts of load models and unusual circuit
configurations. It is easier to make a harmonics flow simulation program solve the power flow
problem than the opposite.

THE PURPOSE OF THIS DOCUMENT

The goal of this document is to serve as a landing pad for users first starting out with OpenDSS.
While it includes much of the same information as the OpenDSS Manual, it is not meant to be
nearly as in-depth a documentation to the software. Summary details of the application will be
provided with references to where the interested reader can find additional materials as
needed.

Page 9 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

The OpenDSS Circuit Model

The OpenDSS consists of a model of the electrical power distribution system in the rms steady
state, overlaid with a communications network that interconnects controls on power delivery
elements and on power conversion elements. The basic “building blocks” of the circuit model
are “Power Delivery” elements (devices like lines, transformers, and capacitors) and “Power
Conversion” elements (devices like generators and loads). Support models — such as control,
shape, meter, and parameter abstractions — can be created to further refine Power Delivery and
Power Conversion models. Further information on all of these models is available in the
OpenDSS Manual. From these elements, the bus and nodes necessary to represent the
interconnected system are dynamical created; this is a significant paradigm shift over traditional
load flow engines which are more bus centered.

BUSES

A bus is a circuit element having [1..N] nodes. Buses are the connection point for all other circuit
elements. In many power system analysis programs, “bus” and “node” are nearly synonymous,
but they are distinctively different in OpenDSS. Bus is the container of Node objects. That is to
say, a Bus has Nodes.

It is always assumed that node O for a bus is the reference/ground/0 V bus. Additional nodes
are traditionally the phases for that bus (for example, node 2 is the B phase). When specifying a
bus address, any and applicable nodes should be included (except node 0, which is assumed to
always be provided). For example, when specifying the three-phase bus BUSNAME, use:

BUSNAME.1.2.3

o 060600 O o
0O 1 23 4

Figure 1: Bus Definition

POWER DELIVERY ELEMENTS

Power delivery (PD) elements (also sometimes called power delivery devices) usually consist of
two or more multiphase terminals. Their basic function is to transport energy from one point to
another. On the power system, the most common power delivery elements are lines and
transformers. Thus, they generally have more than one terminal (capacitors and reactors can
be an exception when shunt-connected rather than series-connected).

Page 10 of 35

Program Revision: 7.6

OpenDSS Primer

Terminal 1
[] 4 _p —
[m]
® . 4 o—
. pl._f o

Power Delivery
Element

September 2012
Terminal 2
- _(fl]

Figure 2: Power Delivery Element Definition

POWER CONVERSION ELEMENTS

Power conversion (PC) elements (also sometimes called power conversion devices) convert
power from electrical form to some other form, or vice-versa. Some may temporarily store
energy and then give it back, as is the case for reactive elements. Most will have only one
connection to the power system and, therefore, only one multiphase terminal. The most
common power conversion elements are generators and loads.

Power Conversion

Element

Figure 3: Power Conversion Element Definition

Page 11 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

SUPPORT ELEMENTS

A wide array of support elements can be defined to further add to Power Delivery and Power
Conversion elements. Support elements provide a convenient abstraction of system
parameters, give control functionality, provide monitoring, or provide relevant shape
information for time analysis. The most commonly used are:

e LineCode— A definition of a line type based on basic data, like the line resistance and
reactance.

e LineGeometry, LineSpacing, and WireData — Used together, these define a line type
based on fundamental principles and physical parameters like the line’s Geometric
Mean Radius (GMR).

e LoadShape — A definition of a scaling multiplier (or actual kW/kVAR) values to use in
time simulations.

e Spectrum — A definition of the harmonic spectrum emitted by a PD element by
harmonic order.

e EnergyMeter — Used to gather various statistics on a whole feeder.

e Monitor — Used to gather power flow results for a specific element.

e CapControl and RegControl — Emulate the control systems for switched capacitors and
regulator tap changers.

Page 12 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Using the OpenDSS GUI

OpenDSS is packaged with a Graphical User Interface (GUI) which provides a structured
environment for the creation and analysis of power system cases. The GUI is one of two primary
methods users can interact with the OpenDSS solution engine; the other is via the COM
interface which is discussed briefly in An Introduction to the COM Interface on page 24 and
more extensively in the OpenDSS Manual.

It should be noted that the GUI is more of a tool to aid with analysis of OpenDSS circuits and the
creation and debugging of scripts (see The Basics of the OpenDSS Scripting Language on page
18) rather than a replacement for scripting. Communication to the DSS is fundamentally
accomplished through text strings passed to the OpenDSS command processor. Scripts or script
fragments are executed by:

1. Selecting the script lines to be executed.

2. The user can then right-click on the selection and then click on the Do Selected option,
which has a short-cut key of Ctrl-D.

3. The selection may also be executed from the Do menu or the speed button directly
below the Do menu item.

All commands executed via the GUI have a counterpart in the OpenDSS scripting language.
These commands are documented in detail in the OpenDSS Manual and the Command and
Element Properties Reference accessible with the GUI through Help > OpenDSS Help. One can
also record the actions performed in the GUI to a .dss file using the record commands tool under
Edit > Record Script.

Simulation results are returned as arrays of values in text through CSV files. A few standard text
file reports are provided by the base OpenDSS software component (see Show and Export menu
commands). The intent for users demanding more sophisticated reports is for users to design
them through Excel worksheets or whatever application they use to control the OpenDSS in
special ways using the COM interface (see An Introduction to the COM Interface on page 24).

Page 13 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

THE USER INTERFACE

When opening OpenDSS, the user is greeted with the following window:

al
71 OpenDSS Data Directory: Copendss\EEETestCases\1238us\ 1 o | B
File Edit Do Set Make Export Show Visualize Plot Reset Window Hel [8]

~|[[3] | cC vV P & | % |[g]pase Frequency - 60 Hz

14] REFAE] NG]

] C\opendss\JEEETestCases\123Bus\IEEE1 23Master.dss e ll= =]

6
Font... 1€l

Mew Linel?Z Phases-1Busl-12 Bue?—2 2 LinaCada—11 1 RS
New Line L3 Phases=3 Bu

Mew Line L4 Phases=1 By 2 Main S LT Ul EI@
Mew Line L5 Phases=1 By Font___

New Line L6 Phases=1 By

New Line L7 Phases=3 By
Mew Line L8 Phases=1 By
New Line.l9 Phases=1 By
New Line L10 Phases=3 B
MNew Line L11 Phases=1 B
Mew Line L12 Phases=1 B
New Line.L13 Phases=3 B
Mew Line L14 Phases=1B
Mew Line L15 Phases=1B
Hew line 1l 1R Phaszes=1 R S

Memory: 11868K i Mo Active Circuit

Figure 4. The OpenDSS User Interface

Key components of the interface include,

1. The menu structure, which drives most of the workflow in OpenDSS. Menus of interest
include:
e The Set menu, which allows one to set any solution parameter that can be
set via the options scripting command.
e The Export menu, which allows one to save various reports to csv files.
e The Show menu, which contains much of the same information as the
reports as the Export menu, but displays them directly in the GUI.
e The Visualize menu, which provides a graphical output of the device
selected via the element selector (item 3 in the figure).
e The Plot menu, which provides graphical output relevant to the whole
system.
2. The toolbar, which provides direct access to many commonly used OpenDSS commands
such as “Solve,” “Summary,” and “Do Command.”
3. The element tools, which allows the user to select what circuit element (by type) to edit
or display visualizations for.
4. The script tools, which allows one to select which of the current opened scripts to run.
5. The results bar, which provides a condensed version of the Results window which can
be accessed through Show > Result Form.
6. Script Windows to directly edit various *.dss files
7. The Main Script Window is a sort of “notepad” or “interactive window” for OpenDSS.
The user can type small commands and run them via the “Do Command” feature (Ctrl-
D). The contents of this window are retained between sessions.
8. The Help button which brings up the OpenDSS Command and Element Properties
Reference which gives a tree-view guide to the various script commands in OpenDSS.

Page 14 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

WORKFLOW

In general, the user will want to:

1. Define the circuit they wish to study by creating new lines, transformers, loads,
generators, etc...
a. Realistically, the best way to do this is by creating a dss script. More details on
scripting are provided in the next chapter starting on page 18

b. Once a script has been written, use the & button to run the selected script.
2. Set up the circuit options, such as the solution mode (snapshot, daily, harmonic, etc...)
a. Thisis accomplished through the commands in the Set menu. The most basic
form of analysis is the “snapshot” which is analogous to a traditional power
flow. For additional information on circuit options, see the OpenDSS Manual.
3. Solve the powerflow problem
a. First, ensure that the bus list is created and the base voltages found by running
Do > Calc Voltage Bases.

b. Then use the button in the toolbar to solve the circuit.
4. Perform analysis on the solved circuit — The specifics of how to accomplish this vary
from analysis to analysis, but some general tasks include:
a. Looking at a branch, transformer, load, or other element in the system —To do
this, first select the element type and then the element from the element
toolbar. Then select the C, V, or P buttons to see a current, voltage, or power

visualization. Select the Eibutton to edit the element. An example of a voltage
visualization for a line is provided in Figure 5.

b. Visualize the voltage profile of the system — Type plot profile into the main
script window, and press Ctrl-D to Do that command. A voltage profile will
come up showing how the voltage progresses as one progresses down the
feeder; an example is provided in Figure 6. Additional parameter can be
specified via the plot command; see the OpenDSS Manual for more details.

c. Visualize data onto a one-line of the feeder — If you provide bus location data via
the buscoords command (see the OpenDSS Manual for more information), you
can superimpose power flow data onto a map/one-line of the system. To do
this, go Plot > Circuit Plots > Circuit Plot. An example is provided in Figure 7.
Additional parameter cans be specified via the plot command; see the
OpenDSS Manual for more details.

d. Export data for analysis in 3™ party program — All results obtained through
OpenDSS can be exported through the various commands in the “Export” menu.
Results are .csv files.

Page 15 of 35

Program Revision: 7.6

OpenDSS Primer

September 2012
] Voltages =l &1
File Edit View About
el ejaje % oulf n | o] HEE 2/
Line.L10 Voltages
8123 13123
1.01588 1 142 e " 1.008 . -185
1.03831 i_ -120.73 n " 1.03612 i_ -120.96
1.0254 i 11820 n " 1.01976 i 11892
Line L10
Figure 5. Voltage Visualization for a Line Element
(73 LN Voltage Profile - - W ~ ol o= |
File Edit View About
& ajaje % 5ul%e| n| o || e[<
p.u. Voltage L-N Voltage Profile
1.040 1%
1.020
1.000 -
0.980 - :
T B i
T T T T

Distance (km)

Figure 6. Voltage Profile for a Feeder

Page 16 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

_ B
4] ieeel123 Losses.DSV —-

File Edit View About

el ejaje| b om[m| n | o] GHE 2| s F 4

4000 Y ieee123:Losses
30004 | a—

AN

Figure 7. Lines Losses for a Feeder

Page 17 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

The Basics of the OpenDSS Scripting Language

The DSS is designed such that all functions can be carried out through text-based DSS Command
Language scripts. The text streams may come from any of these sources:

1. Selecting and executing a script on a Control Panel window,
2. Through the COM interface, or

3. From a standard text file to which the command interpreter may be temporarily
redirected (Compile or Redirect commands).

This makes the DSS an easily accessible tool for users who simply want to key in a small circuit
and do a quick study as well as to those who perform quite complicated studies. It also makes
the DSS more easily adapted by others who have a great deal invested in their own database
and would put forth much effort to conform to another.

The OpenDSS scripting language is case insensitive.

Always refer to the Help command or the command documentation (accessible from the @
button) for the latest commands and property names that are recognized by the DSS.

COMMAND SYNTAX

A command is a single line of a script. A command verb which interacts directly with a circuit
element (like the New and Edit commands) initiates a command that takes the following form:

CommandVerb .Element. =Vall, =Val2

Command verbs which do not interact with circuit elements directly (like the Plot and Export
commands) initiate a command that take the following form:

CommandVerb =Vall, ="Value 2°, =(1 2 3)

COMMAND VERBS

A full list of command verbs is available in the “Executive” section of the command

L
documentation, opened via the ? button. Some common command verbs include:

e New— Create a new circuit element

e Edit - Edit a specified circuit element

e Set — Define solution options, like the mode. See the “options” section of the command
documentation for more information.

e Solve — Perform a solution of the current circuit

e Show — Display power flow results in text format. See the “show” section of the
command documentation for more information.

e Export— Export power flow results to a text/csv file. See the “export” section of the
command documentation for more information.

e Plot - Plot power flow results. See the “plot” section of the command documentation
for more information.

If no command is specified, the Edit command is assumed.

Page 18 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

PARAMETERS

Parameters/value pairs may be separated by commas (,) or white space (blank, tab). If a value
requires delimiters, the following are acceptable. While technically interchangeable, it is
encouraged to follow the following stylistic standards:

e double quotes oLt Strings
e single quotes R Strings
e parentheses ... Arrays
e brackets [---1 Arrays
e curly braces {...} Inline Math (see OpenDSS Manual for details)

Access to a class’s members or element’s parameters (also known as properties) is provided
through the period (.) symbol. All elements should be specified through their fully qualified
name, unless the context can be specifically inferred’. The fully qualified name is in the
following format:

-ElementName
As an extension, an element’s property’s fully qualified name is in the following format:
-ElementName.

When accessing multiple parameters of the same element within the same command,
additional property names beyond the first one do not need to be fully qualified. For example®:

-L1. =1, =5

In addition to being specified in parameter/values pairs, parameters can also be specified in
their default order. This is most commonly done when specifying the element or object
property, as it is always the first property. Specification by order and by parameter/value pairs
can be mixed in the same line, as shown below:

New .Feeder .L115, =1, =false

When specifying a new device, many of the values are given reasonable default values. Full
documentation of what values must be specified, what values have defaults, and what the
default value is set to is provided in the command documentation. In general, element classes
which have element, object, terminal, busi, or bus2 properties do not have default values and
must be specified at device creation.

! For example, when specifying a capacitor control’s element property, the fact the element is a
capacitor is inferred, thus the ElementClass does not have to be included

% Also note no command verb is specified, thus the Edit command verb is being inferred.

Page 19 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

COMMENTS

Comments can be added to scripts using // or ! as demonstrated below:

// Edit the voltage regulator control
.Ctril. =1 ! Limit to one tap change

Multi-line comments are notated via /7* .. */. Note that /7* must be on the first column of the
line. For example:

/* comment out the next two monitors

New Monitor.Source-PQ Vsource.source 1 mode=1 ppolar=no
New Monitor.source-VI Vsource.source 1 mode=0 Vlpolar=Yes
*/

MULTI-LINE COMMANDS

If a command needs to span multiple lines, the ~ symbol (which is an alias for the More
command) should be used, such as in the example below:

New L1 =1, =2, =1
= =mi, =3PH_3/0_Horiz

Note that the above code is actually technically two separate commands. As such, any non-
default parameters that must be defined at instantiation of an Element Class must be defined in
the first line. Thus, the following would generate an error:

// This will error because Busl and Bus2 are not set in the first line
New L1 =1, =mi
~ =1, =2, =3PH_3/0_Horiz

INCLUDING EXTERNAL FILES

There are two ways to include external scripts in an OpenDSS script

1. The Compile command, which inserts another OpenDSS script at that location in the
script file. The Compile command changes the default directory to the directory the
external file is located in.

2. The Redirect command, which inserts another OpenDSS script at that location in the
script file. The redirect command keeps the default directory as the directory of the
source script calling the redirect command.

Some properties, like the mult property found in LoadShapes, may require large lists of data
which are inconvenient to include directly in the script or which come from an external source.
The File capability, which is used in lieu of a traditional value, allows one to read in a file and
use its contents as the value stream for an element. For example:

-LS1 =(File="Example.csv®)

Refer to the OpenDSS Manual for additional information on the File capability and its sister
functions sngFile and dblFile.

Page 20 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

WORKFLOW

As mentioned previously, any tasks that can be done in the GUI can be done through the
scripting language. As such, the tasks presented below are similar to “Workflow” on page 15. In
general, the user will want to:

1. Define the circuit they wish to study by creating new lines, transformers, loads,
generators, etc...
a. Use the Clear command to clear out any circuit that may already be loaded into
OpenDSS
ex: Clear
b. Use the New command to define a new circuit
ex: New object=circuit.ExampleCircuit
c. For each element, use the New command to define the elements in the circuit
ex: New line.L1l busl=1 bus2=2 linecode=336ACSR length=1.25
2. Set up the circuit options, such as the solution mode (snapshot, daily, harmonic, etc...)
a. Use the Sset command to set the values for circuit options
ex: Set mode=snapshot voltagebases=(115, 12.47, .14)
3. Solve the powerflow problem
a. First, ensure that the bus list is created and the base voltages found using the
CalcVoltageBases command
ex: CalcVoltageBases
b. Use the solve command to perform the simulation
ex: Solve
4. Perform analysis on the solved circuit — The specifics of how to accomplish this vary
from analysis to analysis, but some general tasks include:
a. Looking at a branch, transformer, load, or other element in the system — Use the
Visualize command
ex: Visualize element=Line.L1 what=powers
b. Visualize the voltage profile of the system — Use the plot command
ex: Plot profile
c. Visualize data onto a one-line of the feeder — Use the Buscords and Plot
commands

ex: Buscoords BusCordsFile.dat
Plot circuit

d. Export data for analysis in 3" party program — Use the Export command
ex: Export voltages

Page 21 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

EXAMPLE SCRIPT

Consider the following circuit:

Subbus LoadBusl LoadBus2 LoadBus3 Regbus
g | 10 000 ft 10 000 ft 20 000 ft
a —1°
115 kv 12.47 kV R | t DI
. egulator
1000 kW | sookw 9 «
600 kvar
Wind Gen
336 MCM ACSR 8 MW
® Monitor (Untransposed)
Locations

Figure 8. Example Circuit

To create this circuit and perform some basic analysis, the following script could be used:

// The first step is always to clear the DSS and instantiate a new circuit
clear

New =circuit.ExampleCircuit

= =115 1.00 0.0 60.0 3 20000 21000 4.0 3.0 ! edit the voltage source

// Define some load shapes for the loads and wind

I This is an example of defining parameters via their default order

1 in this case, the num of points and interval

New loadshape.day 8 3.0

= =(.3 .36 .48 .62 .87 .95 .94 .60)

I This is an example of an inline calculation, see OpenDSS Manual for more info
New loadshape.wind 2400 {1 24 /} I unit must be hours

= =(file=zavwind.csv) =normalize ! wind turbine characteristic

// Define a linecode for the lines - unbalanced 336 MCM ACSR connection
New linecode.336matrix =3 I horizontal flat construction

I rmatrix, xmatrix, and xmatrix are in lower triangular matrix format.
! see the OpenDSS Manul for more details on how to specify matrixes.

I In ohms per 1000 ft

= =(0.0868455 | 0.0298305 0.0887966 | 0.0288883 0.0298305 0.0868455)
I In ohms per 1000 ft

= =(0.2025449 | 0.0847210 0.1961452 | 0.0719161 0.0847210 0.2025449)
I In nf per 1000 ft

= =(2.74 | -0.70 2.96] -0.34 -0.71 2.74)

~ = 400 =600

// Define Substation transformer

1 Note that the buses property provides an alternate way to specify the
1 buses beyond busl= and bus2=

New transformer.subxfrm =3 =2 =(SourceBus subbus)

= ="delta wye" =(115 12.47) =(20000 20000) =7

// Define the lines

New line.linel =subbus =loadbusl linecode=336matrix =10
New line.line2 loadbusl loadbus2 336matrix 10

New line.line3 Loadbus2 loadbus3 336matrix 20

Page 22 of 35

OpenDSS Primer

Program Revision: 7.6 September 2012
// Define the loads

New load.loadl =loadbus1 =3 =12_47 =1000.0 =0.88 =1
= =1 =day

New load.load2 =loadbus?2 =3 kv=12.47 kw=500.0 pT=0.88 =1
= =1 =day =delta

// Capacitor with control

New capacitor.Capl =loadbus?2 =3 =600 kv=12.47

New capcontrol .CaplCtrl =line.line3 =1 capacitor=Capl

= =current =1 =60 =55 =2

// Regulated transformer to DG bus

New transformer.regl =3 =2

= =(loadbus3 regbus)

= ="wye wye~

~ =(12.47 12.47)
= =(8000 8000)
~ =1 I tiny reactance for a regulator

// Regulator Control definitions

New regcontrol._subxfrmCtrl transformer=subxfrm =2 =125
= =3 =60 =10

New regcontrol.reglCtrl transformer=regl =2 =122 =3
= =60 =15

// Define a wind generator of 8MW

New generator.genl =regbus kV=12.47 k\=8000 pf=1 =delta
= =wind =1

// Define some monitors so we can see what"s happening
// (See documentation on how the mode parameter works)
I Monitor the power output of the wind turbine

New Monitor.genl =generator.genl =1 =1

I Monitor the voltage and currents at the second load bus

New Monitor.loadbus2 load.load2 1 =0

I Monitor sequence voltages and currents magnitudes of line 3, terminal 1
New Monitor.line3 line.line3 1 =48

I You need an energy meter in order to get line distances for a profile plot
New Energymeter.eml line.linel

// Define voltage bases so voltage reports come out in per unit
Set =(115 12.47 .48)

// Generate the bus list and figure out the voltage bases
Calcvoltagebases

// Simulation options to make the cap and reg controllers operate in sync
// with the rest of the simulation

Set =

// Simulation options to do a time based simulation for 24 hours (86400 sec)
// with a time step of 1 sec starting at hour 0, second O

Set = =86400 =0 =1 =0

// Conduct the simulation
Solve

// Show some results

1 Plot how the voltage at loadbusl looked during the day

Plot monitor, =loadbus?2, =(1,3,5)

1 Visualize the line"s flow as it appear at the last timestep

Visualize =Line.linel =powers

1 Show the voltage profile on the feeder as it appeared at the last timestep
Plot

Page 23 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

An Introduction to the COM Interface

While a lot can be done with the standard text scripting interface, knowledgeable users can
open up an entirely new world of applications by learning to effectively use the COM interface.
The COM interface allows one to develop algorithms in another computer program and then
drive the OpenDSS engine to do something that is not currently implemented within it. An
example would be a specific optimization algorithm. Only a few simple ones are currently
implemented inside OpenDSS, but external ones of great complexity can be written. The
algorithms would rely on the OpenDSS to represent the behaviour of the distribution system
while adjusting whatever variables are being optimized.

One good use of the COM interface is to create looping scripts. There are no looping capabilities
in the OpenDSS scripting language. The closest thing is the Next command, which can simplify
scripts that increment time. Even if there were a looping capability, it would execute relatively
slowly because it would be interpreted. Looping scripts are relatively easy to write in other
languages and they generally run quickly.

Detailed documentation of the COM interface is provided in the OpenDSS manual, on the
OpenDSS Wiki, and in the TechNotes (see Reference Resources on page 35). However, the most
up to date documentation is within the COM interface itself; use a type library browser (TLB) —
such as the provided in Microsoft Office’s Visual Basic Editor — to expose the library by opening
the VBA editor when in Excel, for example, add a reference (under the Tools menu) to
OpenDSSEngine. Then you will be able to browse the "library" for OpenDSSEngine using the
"Object Browser" (in the View menu) in the VBA editor.

In this primer, Visual Basic code will be used for examples because it is (arguably) the easiest
language for anyone to read, regardless of their programming background. It is also widely
available: you can try these examples by using the macro editor of Microsoft Excel or in the free
Visual Studio Express version of Visual Basic. Code snippets in Mathwork’s MATLAB (a language
commonly used for scientific computing) and Python (a popular free scripting language which is
gaining a good amount of popularity in the scientific computing community) are provided at the
end of the chapter. However, users have successful used OpenDSS’s COM library in a wide array
of languages including C++, C#, and R.

STARTING OUT WITH THE COM INTERFACE

First of all, make sure that the programming environment you are using is connected to the
OpenDSS COM interface. In Visual Basic, this is done by going to Tools > References or Project >
Add Reference depending on what version you are using. From here, select the OpenDSSEngine
COM type library.

Page 24 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

To instantiate an OpenDSS object and create a link to commonly used functions, use the
following code:

" Declare the OpenDSS related variables
Dim DSSObj As OpenDSSengine.DSS

Dim DSSText As OpenDSSengine.Text

Dim DSSCircuit As OpenDSSengine.Circuit
Dim DSSSolution As OpenDSSengine.Solution

" Instantiate the OpenDSS Object
DSSObj = New OpenDSSengine.DSS

® Start up the Solver

IT Not DSSObj.Start(0) Then
MsgBox("'Unable to start the OpenDSS Engine')
Return

End If

" Set up the Text, Circuit, and Solution Interfaces
DSSText = DSSObj .Text

DSSCircuit = DSSObj.ActiveCircuit

DSSSolution = DSSCircuit.Solution

As can be seen, from the DSS parent object several useful children classes exist. These are

e The Text interface, which provides access to the command line interpreter interface.
Using this object, one can directly execute OpenDSS scripting commands, as found in
the previous section “The Basics of the OpenDSS Scripting Language.”

e The Circuit interface, which provides access to the elements that make up the circuit.
Using members of this object, one can iterate through, edit, and monitor various circuit
elements.

e The Solution interface, which provides access to the solution. Using members of this
object, one can define solution parameters, solve the circuit, and view properties of the
solution, like the number of iterations it took.

The next several sections will take a more in-depth look at these interfaces.

THE TEXT INTERFACE

The text interface is the simplest, but one of the most useful, interfaces. It allows one to
execute OpenDSS scripting commands from the COM interface. Thus anything a user knows
how to do using the scripting engine is instantly available to the COM user!

To use the Text interface, set the Command property of the Text interface to a string with the
command to execute:

* Load in an example circuit

DSSText.Command = ""Compile "C:\example\IEEE123Master.dss""

* Create a new capacitor

DSSText.Command = "New Capacitor.Cl Busl=1 Phases=3 kVAR=1200"
DSSText.Command = *~ Enabled=false™ * You can even use ~

® Change the bus for Line L1

DSSText.Command = "Line.L1.Busl = 5"

Page 25 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

If the command one is executing displays a result, the result can be retrieved using the Result
property of the Text interface:

" Export voltage to a csv file

Dim Filename As String
DSSText.Command = "Export Voltages"
Filename = DSSText.Result
MsgBox("'File saved to: " & Filename)

INTRODUCTION TO THE CIRCUIT INTERFACE

The circuit interface is commonly used to edit the properties of the various elements in a circuit.
Nearly all the element classes in OpenDSS (ie, Lines, Loads, Capacitors, CapControls, etc...) have
a child object under the circuit interface. These child objects also have convenient functions to
allow one to iterate through the member elements which are useful when looping. For
example, this script will loop through all the loads in a circuit and scale the kW up by 20%:

" Step through every load and scale it up
Dim iLoads As Integer * Track what load we"re on

iLoads = DSSCircuit.Loads.First
While i1Loads
* Scale load by 120%
DSSCircuit.Loads.kW = DSSCircuit.Loads.kW * 1.2
" Move to next load
iLoads = DSSCircuit.Loads.Next
End While

If one wants to edit a specific element, use the SetActiveElement method and the
ActiveDSSElement interface as shown below:

" Set a capacitor®s rated kVAR to 1200
DSSCircuit.SetActiveElement("Capacitor.C83")
DSSCircuit._ActiveDSSElement_Properties("'kVAR™) .Val = 1200

However, the benefit of this method over simply using the text interface, as shown below, is
debatable. Use whichever method makes sense to you.

" Does the same thing as the previous snippet
DSSText.Command = **Capacitor.C83.kVAR = 1200"

Another useful feature of the Circuit Interface is to retrieve power flow results, such as bus
voltages, element losses, etc... This example gets the bus names and voltages:

" Get bus voltages

Dim BusNames As String()

Dim Voltages As Double()

BusNames = DSSCircuit.AllBusNames
Voltages DSSCircuit_AllIBusVmagPu

* See what an arbitrary bus®"s voltage is
MsgBox(BusNames(5) & ""s voltage mag in per unit is: " & Voltages(5))

For more on getting power flow results from the circuit interface, see the “All commands”
(AlIEIementLoses, Al INodeVmagByPhase, etc...) in the COM section of the OpenDSS manual.

Page 26 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

INTRODUCTION TO THE SOLUTION INTERFACE

The Solution Interface is used to monitor and control the OpenDSS solution process and control
procedures. This includes solving the circuit, setting the solution mode, monitoring
convergence, reporting the time interval for time and duty based solution, and other such
aspects of solving an OpenDSS circuit.

At its most fundamental level, the solution interface allows one to solve the circuit:

* Solve the Circuit
DSSSolution.Solve()
IT DSSSolution.Converged Then
MsgBox("'The Circuit Solved Successfully'™)
End If

One can also control the solution at a more granular level. For example, say one wanted to
model the effects of a large load pickup 30 seconds into a simulation. The code below could be
used:

" Model effects of a large load pickup 30 seconds into a simulation
DSSText.Command = _
"New Monitor_.Monl element=Line.L100 mode=0"

DSSSolution.StepSize = 1 * Set step size to 1 sec
DSSSolution.Number = 30 " Solve 30 seconds of the simulation

® Set the solution mode to duty cycle, which forces loads to use their
" "duty cycle loadshape and allows time based simulation

DSSSolution.Mode = OpenDSSengine.SolvelModes.dssDutyCycle
DSSSolution.Solve()

DSSCircuit._Enable(*"Load.L1") * Enable the load
DSSSolution.Number = 30 * Solve another 30 seconds of simulation

DSSSolution.Solve()

MsgBox(*'Seconds Elapsed: ™ & DSSSolution.Seconds)
" Plot the voltage for the 60 seconds of simulation
DSSText.Command = *"Plot monitor object=Monl Channels=(1,3,5)"

Finally, the circuit interface grants very specific information into the method and control behind
the solution. Using the various “Solve” methods (ex, Solve, SolveDirect, SolveNoControl,
etc...) and other functions like SystemYChanged and MostlterationsDone, granular control of
and information on the solution process can be obtained. Using CheckControls and other
methods in the Solution Interface, along with the DSSCircuit.CtriQueue interface, specialized
control schemes can be implemented. The details of this are beyond the scope of this
document; more information can be found in the OpenDSS TechNotes (see “Reference
Resources” on page 35).

Page 27 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

EXAMPLE IN VISUAL BASIC

The code presented below is identical to the snippets presented throughout this chapter. It is
provided in one convenient location for reference.

* * Initialize OpenDSS

* Declare the OpenDSS related variables
Dim DSSObj As OpenDSSengine.DSS

Dim DSSText As OpenDSSengine.Text

Dim DSSCircuit As OpenDSSengine.Circult
Dim DSSSolution As OpenDSSengine.Solution

" Instantiate the OpenDSS Object
DSSObj = New OpenDSSengine.DSS

" Start up the Solver

IT¥ Not DSSObj.Start(0) Then
MsgBox(*'Unable to start the OpenDSS Engine')
Return

End IFf

® Set up the Text, Circuit, and Solution Interfaces
DSSText = DSSObj.Text

DSSCircuit = DSSObj.ActiveCircuit

DSSSolution = DSSCircuit.Solution

* * Examples Using the DSSText Object

* Load in an example circuit

DSSText.Command = ""Compile "C:\example\IEEE123Master.dss""

* Create a new capacitor

DSSText.Command = "New Capacitor.Cl Busl=1 Phases=3 kVAR=1200"
DSSText.Command = "~ Enabled=false™ " You can even use ~

® Change the bus for Line L1

DSSText.Command = "Line.L1.Busl = 5"

" Export voltage to a csv file

Dim Filename As String
DSSText.Command = "Export Voltages"
Filename = DSSText.Result
MsgBox("'File saved to: " & Filename)

* * Examples Using the DSSCircuit Object

® Step through every load and scale i1t up
Dim iLoads As Integer " Track what load we"re on

iLoads = DSSCircuit.Loads.First
While ilLoads
" Scale load by 120%
DSSCircuit.Loads.kW = DSSCircuit.Loads.kW * 1.2
" Move to next load
iLoads = DSSCircuit.Loads.Next
End While

" Set a capacitor®s rated kVAR to 1200

DSSCircuit.SetActiveElement(""Capacitor.C83")
DSSCircuit._ActiveDSSElement_Properties("'kVAR™) .Val = 1200

Page 28 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

" Get bus voltages

Dim BusNames As String()

Dim Voltages As Double()

BusNames = DSSCircuit._AllBusNames
Voltages = DSSCircuit.AllBusVmagPu

" See what an arbitrary bus"s voltage is
MsgBox(BusNames(5) & ""s voltage mag in per unit is: " & Voltages(5))

R S

" * Examples Using the DSSSolution Object

R S S

" Solve the Circuit
DSSSolution.Solve()
1T DSSSolution.Converged Then
MsgBox(""'The Circuit Solved Successfully™)
End If

" Model effects of a large load pickup 30 seconds into a simulation
DSSText.Command = _

"New Monitor_Monl element=Line.L100 mode=0"
DSSSolution.StepSize = 1 " Set step size to 1 sec
DSSSolution_Number = 30 * Solve 30 seconds of the simulation
" Set the solution mode to duty cycle, which forces loads to use their
" "duty cycle loadshape and allows time based simulation
DSSSolution.Mode = OpenDSSengine.SolvelModes.dssDutyCycle
DSSSolution.Solve()

DSSCircuit.Enable("'Load.L1™) " Enable the load
DSSSolution.Number = 30 " Solve another 30 seconds of simulation
DSSSolution.Solve()

MsgBox("'Seconds Elapsed: " & DSSSolution.Seconds)

" Plot the voltage for the 60 seconds of simulation
DSSText.Command = "Plot monitor object=Monl Channels=(1,3,5)"

Page 29 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

EXAMPLE IN MATLAB

The code presented below performs the same functions as the code snippets presented
throughout this chapter in Mathwork’s MATLAB. Much of this code could also be implemented
in Octave with little change (see the Octave example directory in the install path).

clc
clear all
close all

0/0 AEAAAEAAAAAAAAXAAAAXAAAXAXAAAAAAAAAAAAAAAAAAAAAAAAkhhAAhhhihx

% * Initialize OpenDSS

[)/0 AEAAAEAAAAAAAAXAAAAXAAAXAXAAAAAAAAAAAAAAAAAAAAAAAAkhhAhhhihx
% Instantiate the OpenDSS Object

DSSObj = actxserver("OpenDSSEngine.DSS");

% Start up the Solver

ifT ~DSSObj.Start(0),
disp("Unable to start the OpenDSS Engine-®)
return

end

% Set up the Text, Circuit, and Solution Interfaces
DSSText = DSSObj.Text;

DSSCircuit = DSSObj.ActiveCircuit;

DSSSolution = DSSCircuit.Solution;

%
% * Examples Using the DSSText Object
%
% Load in an example circuit

DSSText.Command = "Compile "C:\example\lEEE123Master.dss"";

% Create a new capacitor

DSSText.Command = "New Capacitor.Cl Busl=1 Phases=3 kVAR=1200";
DSSText.Command = "~ Enabled=false"; % You can even use ~

% Change the bus for Line L1

DSSText.Command = "Line.L1.Busl = 5%;

% Export voltage to a csv file
DSSText.Command = "Export Voltages”®;
Filename = DSSText.Result;
disp(["File saved to: " Filename])

% xxxxxxxxxx

% * Examples Using the DSSCircuit Object
%
% Step through every load and scale it up

iLoads = DSSCircuit.Loads.First;
while i1lLoads,
% Scale load by 120%
DSSCircuit.Loads.kW = DSSCircuit.Loads.kW * 1.2;
% Move to next load
iLoads = DSSCircuit.Loads.Next;
end

Page 30 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

% Set a capacitor®s rated kVAR to 1200
DSSCircuit.SetActiveElement("Capacitor.C83%);
DSSCircuit.ActiveDSSElement.Properties("kVAR").val = "1200";

% Get bus voltages
BusNames = DSSCircuit._AllBusNames;
Voltages = DSSCircuit.AllBusVmagPu;

% See what an arbitrary bus®"s voltage is
disp([BusNames{5} """s voltage mag in per unit is:
num2str(Voltages(5))1])

%
% * Examples Using the DSSSolution Object
%
% Solve the Circuit
DSSSolution.Solve();
if DSSSolution.Converged,

disp("The Circuit Solved Successfully™)
end

% Model effects of a large load pickup 30 seconds into a simulation
DSSText.Command = ...

“New Monitor.Monl element=Line.L100 mode=0";
DSSSolution.StepSize = 1; % Set step size to 1 sec
DSSSolution.Number = 30; % Solve 30 seconds of the simulation
% Set the solution mode to duty cycle, which forces loads to use their
% "duty cycle® loadshape and allows time based simulation
DSSSolution.Mode = 6; % Code for duty cycle mode
DSSSolution.Solve();

DSSCircuit.Enable("Load.L1%); % Enable the load
DSSSolution.Number = 30; % Solve another 30 seconds of simulation
DSSSolution.Solve();

disp(["Seconds Elapsed: " num2str(DSSSolution.Seconds)])
% Plot the voltage for the 60 seconds of simulation
DSSText.Command = "Plot monitor object=Monl Channels=(1,3,5)";

Page 31 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

EXAMPLE IN PYTHON

The code presented below performs the same functions as the code snippets presented
throughout this chapter in Python.

import win32com.client

#
* Initialize OpenDSS
AAEEEEAAAAALAAAAAAAAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAKX
Instantiate the OpenDSS Object
try:

DSSObj = win32com.client.Dispatch("'OpenDSSEngine.DSS™)
except:

print "Unable to start the OpenDSS Engine"

raise SystemExit

Set up the Text, Circuit, and Solution Interfaces
DSSText = DSSObj.Text

DSSCircuit = DSSObj -ActiveCircuit

DSSSolution = DSSCircuit.Solution

xxxxx

* Examples Using the DSSText Object

xxxxx

Load in an example circuit

DSSText.Command = r"Compile "C:\example\IEEE123Master.dss"""

Create a new capacitor

DSSText.Command = "New Capacitor.Cl Busl=1 Phases=3 kVAR=1200""
DSSText.Command = "~ Enabled=false™ # You can even use ~

Change the bus for Line L1

DSSText.Command = “Line.L1.Busl = 5"

Export voltage to a csv file
DSSText.Command = "Export Voltages™
Filename = DSSText.Result

print “File saved to: " + Filename

R S o S e S S R S o S S S S S S e S S o S R Sk S S S e S S e e e o e

* Examples Using the DSSCircuit Object
AEAA A A A A A A A A A A AAAAAAAAAAAAAAAAAAXAAAAAAAAAAAAXA KA Adhdh
Step through every load and scale it up
iLoads = DSSCircuit.Loads.First
while ilLoads:
Scale load by 120%
DSSCircuit.Loads.kW = DSSCircuit.Loads.kW * 1.2
Move to next load
iLoads = DSSCircuit.Loads.Next

Set a capacitor®s rated kVAR to 1200
DSSCircuit.SetActiveElement(''Capacitor.C83™)
DSSCircuit._ActiveDSSElement._Properties("'kVAR™) .Val = 1200

Get bus voltages
BusNames DSSCircuit.AllBusNames
Voltages = DSSCircuit.AllBusVmagPu

Page 32 of 35

OpenDSS Primer

Program Revision: 7.6 September 2012
See what an arbitrary bus®s voltage is
print BusNames[5] + ""s voltage mag in per unit is: " + \
str(Voltages[5])
nnnnnn
* Examples Using the DSSSolution Object
nnnnnn

Solve the Circuit
DSSSolution.Solve()
it DSSSolution.Converged:
print "The Circuit Solved Successfully"

Model effects of a large load pickup 30 seconds into a simulation
DSSText.Command = \

"New Monitor.Monl element=Line.L100 mode=0"

DSSSolution.StepSize = 1 # Set step size to 1 sec
DSSSolution_Number = 30 # Solve 30 seconds of the simulation

Set the solution mode to duty cycle, which forces loads to use their
"duty cycle loadshape and allows time based simulation
DSSSolution.Mode = 6 # Code for duty cycle mode

DSSSolution.Solve()

DSSCircuit.Enable(Load.L1"™) # Enable the load
DSSSolution.Number = 30 # Solve another 30 seconds of simulation
DSSSolution.Solve()

print "Seconds Elapsed: " + str(DSSSolution.Seconds)

Plot the voltage for the 60 seconds of simulation
DSSText.Command = "Plot monitor object=Monl Channels=(1,3,5)"

Page 33 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

Additional Resources

As you continue to use OpenDSS and explore its vast capabilities, you will no doubt run into
situations where you require more information than is provided in this introductory guide. For
these purposes, the OpenDSS developers and community have provided several resources.

WHERE TO GO FROM HERE?

From the information in this manual, you should be ready to get your feet wet and start playing
around with the software. An extensive series of examples of all the features of OpenDSS are
provided in the Examples directory of the OpenDSS installation path. These include:

e Further OpenDSS scripting examples, provided in the “Examples/Scripts” directory.

e Examples of the various solution modes, such as time based simulations, duty-cycle
simulations, annual energy simulations, Monte Carlo analysis, dynamic analysis,
harmonic analysis, fault studies, capacitor placement optimization, geomagnetically
induced current studies, and many more

e Examples of the various circuit elements, such as

0 Voltage regulators and their controls, capacitors and their controls, and
centralized volt-VAR optimization controllers

0 All sorts of generator models, like the classic PV generator model, fixed power
factor generators, inverters, photovoltaic systems, induction generators,
storage elements, centrally dispatched generation, and others.

0 Fuses, reclosers, relays, and faults

0 Elements specific to modeling, like load shapes, growth curves, harmonic
spectrums, line geometries, temperature curves, energy meters, and monitors

e Examples and basic wrappers for driving OpenDSS through the COM interface in several
program languages including,

0 MATLAB
0 Python
0 Visual Basic for Applications through Excel

e Aseries of true-to-life distribution feeder models are provided in the EPRITestCircuits
directory.

e Asimple transmission model is provided in the Examples/Stevenson directory.

Additional introductory and training materials are also provided in the Training directory of the
OpenDSS install path and in the Training directory on SourceForge, located here.

Page 34 of 35

OpenDSS Primer
Program Revision: 7.6 September 2012

REFERENCE RESOURCES

OpenDSS provides several reference resources to extensively document the various features of
the DSS scripting language and COM interface.

e The in-program help interface, accessible through Help > DSS Help or the @ button,
provides a quick reference to the various properties of OpenDSS circuit elements and
commands.

e The OpenDSS manual, located in Doc/OpenDSSManual.pdf of the OpenDSS installation
directory, gives significantly more in depth information into OpenDSS features and
interworkings than presented here as well as a comprehensive COM and OpenDSS
language reference.

e The OpenDSS TechNotes, located in the Docs directory of the OpenDSS installation path
are a set of white papers that give very specific and detailed information on the COM
interface, OpenDSS features, and more esoteric applications of the program such as
modeling transformer core effects and photovoltaic systems.

e The OpenDSS wiki, located at here gives additional information that can also be found
in the white papers and manual. It is an especially good source of information on the
COM interface.

e Atype library browser (TLB) — such as the provided in Microsoft Office’s Visual Basic
Editor — can be used to expose the COM object. To do this, open the VBA editor when in
Excel, for example, add a reference (under the Tools menu) to OpenDSSEngine.DSS.
Then you will be able to browse the "library" for OpenDSSEngine using the "Object
Browser" (in the View menu) in the VBA editor.

ADDITIONAL HELP

If you require additional help, the OpenDSS forums on SourceForge foster a thriving community
to address your question. You can find the forums here.

Page 35 of 35

