
 

 

 

 

 

Innovative Lifelong e-Learning for 

Professional Engineers  

(e-ProfEng) 

586391-EPP-1-2017-1-SE-EPPKA2-CBHE-JP 

 

Training in Electrical Engineering Discipline 

Modeling and Simulation in Electrical Engineering 

 

Teaching Materials for Topic 3 

Theory and implementation of metaheuristic optimization 

methods for optimizations in the distribution power system 
 

 

 

Authors:   

Marinko Barukčić, P9 FERIT 

  



 
  

 
 

P a g e 2 | 25 

Contents 

Optimization in brief ............................................................................................................................... 3 

Mathematics notation of the optimization problem .......................................................................... 3 

Overview of the optimization techniques .......................................................................................... 3 

Optimization in electric power networks ............................................................................................... 6 

Used computational tools for simulation and optimization in the power system ................................. 6 

Differential evolution optimization using SciPy package .................................................................... 6 

Exercise 1: Optimization of the problem with an analytically objective function .............................. 8 

OpenDSS simulation software – basics for model generating ............................................................ 9 

Exercise 2: Coding distribution networks in OpenDSS ...................................................................... 12 

Co-simulation approach to metaheuristic optimizations in electric power system ............................. 13 

OpenDSS – SciPy DE co-simulation ................................................................................................... 14 

Exercise 3: Optimal allocation of distributed generation (DG) in the distribution network ............ 15 

Basics of multiobjective optimization ................................................................................................... 17 

DEAP – Python package for multiobjective optimization ................................................................. 19 

Exercise 4: Optimal allocation of distributed generation (DG) in the distribution network for two 

objective optimization problem ........................................................................................................ 21 

References as sources for further self-learning .................................................................................... 22 

Reference list .................................................................................................................................... 22 

 

 

  



 
  

 
 

P a g e 3 | 25 

Optimization in brief 

Optimization is the process of finding the value of something that satisfied (match) some criteria as 

best as possible. From a mathematical point of view, it is the procedure of finding the value of the 

variable (parameter) gives the optimal value of some objective (minimum or maximum extrema). 

Mathematics notation of the optimization problem 

The general mathematical description of the optimization problem can be expressed as: 

 

( )

( )

1

( ) minimize(maximize)

,...,

subject to:

0, 1,...,

0, 1,...,

obj

m

i e

j i

l u

f f X

X x x

h X i n

g X j n

X X X

= →

=

= =

 =

 

  (3.1) 

where fobj is an objective function, X is a vector of the solution, h and g are equality and inequality 

constraints respectively. 

Elements of the solution vector are decision variables. Decision variables values are the solutions of 

the optimization problem. The size (number of elements) of the decision variable vector represents 

problem dimensionality also. Depending on the features of the objective function and constraints as 

well as problem dimensionality the optimization problem can be very hard to solve. 

Overview of the optimization techniques 

There are different optimization techniques that can be applied to solve the optimization problem 

(3.1). Schematic overview of the optimization procedure is given in Fig. 3.1. 

 

Figure 3.1: Representation of the optimization procedure 

The main classification of the optimization techniques is on classical and metaheuristic (heuristic) 

methods[1]–[3]. 

Both classes of the optimization techniques have a number of methods. 



 
  

 
 

P a g e 4 | 25 

The main group inside the classical optimization techniques are mathematical programming methods. 

Some of the classical optimization procedures are: 

• Linear programming 

• Nonlinear programming 

• Quadratic programming 

• Combinatorial optimization 

• … 

The metaheuristic (nonclassical, advanced) optimization methods are procedures for solving 

optimization problems using partly knowledge about the optimization problem and stochastic based 

operators. The area of metaheuristic optimization techniques has been researcher very intensive 

recent time (last few decades). Most of these optimization methods belong to the class of the nature-

inspired optimization algorithms. There are three subsets inside this overall set of metaheuristic 

methods such are bio-inspired algorithms, physics, and chemistry based methods. Special subsets of 

the metaheuristic method of bio-inspired methods are swarm intelligence (SI) based methods and 

evolutionary algorithms (EA) [4]–[6]. Examples of metaheuristic methods are: 

• Simulated annealing 

• Genetic algorithm 

• Evolutionary strategy 

• Differential evolution (do not has a background in nature but has features of EA) 

• Particle swarm optimization 

• Cuckoo search optimization 

• … 

Most of the metaheuristic algorithms are population-based methods. Because they have not 

deterministic operators, usually these optimization techniques are described as methods available to 

find a solution near to global optimum. Also, metaheuristic optimizations algorithms are capable to 

be global optimization procedures. 

On figure 3.2 the general scheme of population-based optimization techniques is given. 

 

Figure 3.2: Procedure of population-based metaheuristic optimization algorithm 

Metaheuristic optimization methods search the problem solution space using stochastic operators 

and need minimum information about the objective function. Classical optimization algorithms 

required knowing the analytic form of the objective function because they usually use some of the 



 
  

 
 

P a g e 5 | 25 

gradient-based procedure to search the solution space. On the other hand, metaheuristic 

optimizations require only numerical values of the objective. In Table 3.1 main features of the classical 

and metaheuristic optimizations are given. 

Table 3.1: Comparison of main features of the metaheuristic and classical optimization techniques 

Optimization 
/OP properties 

Conventional (classic) Metaheuristic 

Objective, Constraints 
analytic expression, 

continuous, differentiable 
(smooth) 

continuous, discontinuous, 
differentiable, non-

differentiable, only values are 
required 

Decision variables real, integer (some methods) 
real, integer (some methods), 

linguistic 

Start point in the solution 
space 

one multiple 

 

Based on the properties given in Table 3.1, the advantages and drawbacks of each optimization 

method group are shown in Table 3.2. 

Table 3.2: Advantages and drawbacks of the optimization method classes 

 Conventional (classic) Metaheuristic 

Advantages 

The deterministic solution, 
proved convergence, law 

number of objective function 
and constraints calculation, 
faster (lower computational 

time) 

Can work using only numeric 
data (analytic expression is not 
required), avoid stuck in local 
optimum (parallel search in 
solution space, use multiple 
starting points), can be used 

for black-box optimization, can 
be used for global optimization 

Drawbacks 

The solution can depend on 
starting point, high possibility 

of stuck in local optimum, 
can’t be used for black-box 

optimization 

Stochastic operators (can 
occur different solution when 
optimization is repeated), high 
computational effort and time 

(due to the high number of 
objective and constraints 

values calculations) 

 

The differential evolution (DE) will be used here as a metaheuristic optimization method. 

  



 
  

 
 

P a g e 6 | 25 

Optimization in electric power networks 

Generally speaking, each problem in power system which can be formulated in the form of the 

optimization problem can be solved by using the optimization techniques. Some of the most solved 

optimization problems in power systems are: 

• Allocation of devices in a power network 

• System and devices control 

• Optimal Power Flow 

• Parameters identification 

• System and device design 

• Network configuration and reconfiguration 

• … 

The optimization in the distribution power system becomes very actual today due to the development 

of the smart grid concept and increasing of energy efficiency. Because the objective function is often 

calculating by using iterative numerical method or simulation, the metaheuristic optimization 

algorithms are very applicable for this purpose. Some additional examples of metaheuristic 

optimization applied to problems in the power system can be found in [7], [8]. 

Used computational tools for simulation and optimization in the power 

system 

Thanks to the development of computer techniques and methods of numerical mathematics, there 

are a lot of the simulation tools for modeling and simulation of the distribution power system. Use of 

such simulation tools makes able to perform more accurate calculations decreasing approximations 

in the model. There are a number of both commercial and non-commercial (mostly open source) 

simulation tools [9]. Generally speaking, for academic purposes, commercial software have some 

advantages such are: more user-friendly interface, offer “all in one” solution, tested and validate 

calculation procedures, have technical support but the main drawback is usually high price. On the 

other hand, costless tools can be achieved for free or with symbolic price, have possibilities to user 

modifications and changes but require more work for model building and result presentation. The 

commercial tools generally have more simulation possibilities then non-commercial but there are a 

few open source tools have features comparable to the commercial tools. One of such tool is OpenDSS 

simulation tool [10]. Speaking about existing metaheuristic optimization tools there are a few very 

specialized commercial solutions [11], [12] as well as tools for general using [13]–[15] but a lot of the 

tools can be found as open source available in different programming environments (Python, Java, 

C++, …). One of open source tool implementing metaheuristic optimization by differential evolution 

in Python is used here. 

Differential evolution optimization using SciPy package 

SciPy is an open source Python package intended for scientific programming and calculations [16]. The 

package has submodule for optimization performing called scipy.optimize package [17]. The package 

has functions for classical optimizations and some heuristic methods. Here differential evolution 

optimization function will be used [18]. The scheme for using scipy.optimize.differential_evolution the 

procedure is shown in Figure 3.3. 

 



 
  

 
 

P a g e 7 | 25 

 

 

Figure 3.3: Using differential evolution from scipy 

The DE search solution in the solution space using stochastically based evolutionary operators 

crossover, mutation and selection (Figure 3.2). These operators are defined in DE as follows. 

Mutation generate mutant vector: 

( )j r1 r2 r3

g g g gSm = S + F S S

r1 r2 r3

 −

 
 (3.2) 

the Sg
r1 is the base vector and Sg

r2, Sg
r3 are difference vectors. 

Recombination is applied on a mutant vector to get the trial vector: 

 )( )0,1
,

,

,

j
Sm if rand Cr

g i ij
St

g i j
S otherwise

g i

 


= 



 (3.3) 

Stj
g,i is the ith element of the jth trial vector for the population. The Sj

g is the jth individual (usually called 

the target vector) from the population and Sj
g,i is the ith element of the Sj

g. The Cr is DE parameter, 

called crossover rate in the range [0, 1]. 

The next generation is populated by the solutions chosen by the selection operator: 

1

j j j
St if f St f S

g g gj
S

g j
S otherwise

g

     
         = +




 (3.4) 

j
gS 1+


, j

gtS


 and j
gS


 are the individual in the new generation, the trial vector and the target solution 

vector. 

The scipy DE function is called by next code: 

scipy.optimize.differential_evolution(OF, BoxCnstr., maxiter=100, popsize=15, mutation=(0.5, 

1), recombination=0.7, disp=True, polish=False) 



 
  

 
 

P a g e 8 | 25 

The first argument of the DE function call function calculates value of the objective “OF”, the second 

argument is list contains variable decision limits “BoxCnstr”, rest of the arguments are parameters of 

DE method, number of DE generations, size of the population, mutation factor, crossover factor, 

“maxiter=100, popsize=15, mutation=(0.5, 1), recombination=0.7”, displaying solution evolution 

through the generations can be set by “disp=True”, and application of the local optimizer can be 

disabled by “polish=False”. 

The objective function (OF) is defined as a standard function in Python. The first argument of this 

function is individual (ind) of DE and other (optional) arguments (not directly used by DE) can be added 

on other positions of function arguments. The objective function, in this case, can be coded as: 

def OF(ind, *additionalArguments): 

 v1, v2 = ind[0], ind[1] 

 OFvalue = v1+v2**2 

 return OFvalue 

Exercise 1: Optimization of the problem with an analytically objective function 

Task: Find optimal powers of the generating units such that power (energy) production cost per hour 

is as low as possible (unit commitment problem). 

Problem description: The electric power system consists of four generating units supplying the loads 

with energy. Value of total load is constant in time. Each source produces power (energy) at a price 

described by the production cost function. The optimal amount of each source needs to be found by 

the metaheuristic optimization procedure. 

System data: 

The production cost function is given by: 

( )2 0,1,2,3i i i i i iC a P b P c i= + +   (3.5) 

The cost coefficients values in (3.5) are given in Table 3.3. 

Table 3.3: Cost coefficients for each production unit 

Coefficient\Unit 0 1 2 3 

a [EUR/kW2] 3e-4 2e-4 8e-4 1e-4 

b [EUR/kW] 0.02 0.015 0.024 0.018 

c [EUR] 7 5 4 7 

 

Power limit per production unit: 1000 kW 

Amount of total system load is Pload = 2500 kW. 

Specific tasks to solve the optimization problem by using the metaheuristic optimization procedure: 

• Formulate the optimization problem (expressions for the objective function and constraints) 

• Coding decision variables in the method individual 

• Defining ranges (limits) of the decision variables-box constraints 

• Coding the problem in the specific optimization tool (SciPy DE). 



 
  

 
 

P a g e 9 | 25 

Guidance for problem solving: 

The objective function: summation of cost functions of each unit 

The constraint: system power balance equation – equality constraint, unit production range – box 

constraints 

Syntax of ScyPy Differential Evolution function: https://docs.scipy.org/doc/scipy-

0.17.0/reference/generated/scipy.optimize.differential_evolution.html  

Solution: jupyter notebook Optim01.ipynb in additional materials, OF = 402.1 EUR, P1 = 522.68 kW, 

P2 = 786.92 kW, P3 = 190.53 kW, P4 = 1000 kW. 

Self exercise 1: 

• All units produce in range 300 – 1000 kW (all other data are same as in the basic problem), 

solution: OF = 412.51 EUR, P1 = 477.24 kW, P2 = 722.96 kW, P3 = 300 kW, P4 = 1000 kW. 

• Total load is 500 kW (all other data are same as in the basic problem), solution: OF = 44.63 

EUR, P1 = 80.86 kW, P2 = 135.83 kW, P3 = 29.1 kW, P4 = 254.2 kW. 

OpenDSS simulation software – basics for model generating 

The OpenDSS simulation tool is, above all, intended for simulation of the modern distribution system 

and it is maintained by EPRI institute [19]. Detailed instructions for using of the tool can be found in 

the manual (also available after software installation) [20] and very useful materials for starting in use 

of the tool are available on [21] such are [22]–[24]. One of the very useful features of the OpenDSS 

will be used here, is its interfacing possibilities to other simulation tools and programming 

environments. The OpenDSS can be achieved and manipulate from MATLAB, PYTHON, Visual Basic for 

Application, C…[20]. Some of the basic things needed for model building in the OpenDSS simulation 

toll are shown below. 

After the OpenDSS is started the main program window is opened (Figure 3.4). The distribution system 

(network) model is built by writing a textual script so there is no graphical interface (GUI) with drag 

and drop approach. However, recently OpenDSS version including GUI for system modeling OpenDSS-

G is presented [25]. The text script approach is very useful for modification network model in OpenDSS 

through the external programming environment (MATLAB; PYTHON…) making the OpenDSS very 

flexible for specific user usage. Thanks to this whole model in OpenDSS can be generated from an 

external tool. Also, the model in the form of the script allows building the model in any text editor 

(Notepad, Word …) and simply copying it in the OpenDSS window. The program execution and model 

solving is done by selecting all text in the script and choosing the command “Do selected” as it shows 

Figure 3.5. The main approach to build a model in OpenDSS is based on modeling each the real 

network element by the command in the script. When some code is written comments are usually 

added in it for purpose of code explanation. The text in OpenDSS will be considered as a comment if 

the exclamation mark is inserted on the beginning of the text line: 

! All write after exclamation mark is a comment (limited od one line in the script) 

If the command in the script is longer than one line it can be continued in the next line by inserting 

tilde (~) mark at the beginning: 

This command is in 

~ two lines 

https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.differential_evolution.html


 
  

 
 

P a g e 10 | 25 

 

Figure 3.4 OpenDSS user interface 

 

Figure 3.5 Start simulation in OpenDSS 

The model of the real system element is represented by the object in OpenDSS. This object is 

programmed in the form of the OpenDSS class [20]. The general representation of the network 

(system) element model in OpenDSS is done by giving keyword (program command) at the beginning 

of the script line, after that instantiate the object class and defining an object: 

Command verb  Object class Class attributes 

According to this syntax the model of the network element in the OpenDSS script has three main parts 

and can be added as: 

New element.SomeName  Bus1=Name Par1=value Par2=value … 



 
  

 
 

P a g e 11 | 25 

Space (obtained by keyboard backspace or tab) or comma are used to designate different parts of the 

above general syntax scheme. Depending on the action in OpenDSS each script line has to have the 

first part (Command verb) of the given syntax scheme at least. 

Based on the above explanation the distribution system model can be generated. The first reference 

node (slack node) need to be modeled by using the Thevenin equivalent: 

New circuit.TestNet basekv=11 pu=1.0 phases=3  bus1=SourceBus  Angle=0 

The command verb for adding the element in the model is “New”, object class represents the Thevenin 

equivalent is “circuit”, the arbitrary name of the element (class instance) in this case is “TestNet”, 

attributes of the class are parameters of the element defined in form “parameter name = parameter 

value” – source nominal voltage = amount in kV – “basekv=11”, place of the source installation in the 

system is defined as bus1=bus name (arbitrary) – “bus1=SourceBus”, reference voltage in p.u. is given 

by “pu=1.0”, number of phases is defined as “phases=3”, voltage phase shift in degrees is given by 

“Angle=0”. 

The network lines can be added into the OpenDSS model as follow: 

New line.L1 bus1=SourceBus bus2=B2 R1=0.117 X1=0.048 Phases=3 

In case of the line the buses on which line terminals are connected (buses connected by line) need to 

be defined “bus1=SourceBus bus2=B2”, line parameters can be defined in more ways [20] and here it 

is done by defining line series impedance per length (resistance and inductive reactance in Ohm/m) 

as “R1=0.117 X1=0.048”. If the length of the line is not defined the default length multiplier is 1. 

The load is defined by the next script line: 

New load.LD1 bus1=B2 kv=11 kw=230 kvar=142.5 model=1 Phases=3 conn=wye 

Because the load is connected as shunt in the network only one bus is defined “bus1=B2”, nominal 

voltage in kV, nominal active (in kW) and reactive (in kvar) powers of the load are given by 

“kv=11 kw=230 kvar=142.5” respectively, mathematical model of the load (constant power, 

constant impedance…) is defined as “model=1” and type of the load connection by 

“conn=wye”. 

At the end of the model all nominal voltage values existing in the different parts of the system 

are given with the purpose of expressing simulation results in p.u.: 

Set voltagebases=[11] 

The generating list of bus names is done giving the command: 

Calcv 

After the network model is coded, the simulation can be performed by: 

Solve 

Writing and showing some results the command starting with command “Show” is used: 

Show voltages 



 
  

 
 

P a g e 12 | 25 

Exercise 2: Coding distribution networks in OpenDSS 

Task: For given example of the distribution network feeder in Figure 3.6, make a model in OpenDSS 

simulation tool. Data of the network are given in Table 3.4. Simulate a given network and show total 

losses and phase voltages in all nodes. Loads are modeled as constant power load model. 

 

Figure 3.6: 11 kV Distribution network 

 

Table 3.4: Data of the network from Figure 3.6. 

Line 
Line impedance 

Node 
Load power 

R [] XL [] P [kW] Q [kvar] 

1 – 2 0,117 0,048 2 230,00 142,50 

2 – 3 0,107 0,044 3 0,00 0,00 

3 – 4 0,164 0,046 4 230,00 142,50 

4 – 5 0,150 0,042 5 230,00 142,50 

5 – 6 0,150 0,042 6 0,00 0,00 

6 – 7 0,314 0,054 7 0,00 0,00 

7 – 8 0,210 0,036 8 230,00 142,50 

8 – 9 0,314 0,054 9 230,00 142,50 

9 – 10 0,210 0,036 10 0,00 0,00 

10 – 11 0,131 0,023 11 230,00 142,50 

11 – 12 0,105 0,018 12 137,00 84,00 

3 – 13 0,157 0,027 13 72,00 45,00 

13 – 14 0,210 0,036 14 72,00 45,00 

14 – 15 0,105 0,018 15 72,00 45,00 

15 – 16 0,052 0,009 16 13,50 7,50 

2
1

543 6 987 1110 12

P2, Q2 P4, Q4 P5, Q5 P8, Q8 P9, Q9 P11, Q11 P12, Q12

16

13

15

14

P16, Q16

P15, Q15

P14, Q14

P13, Q13

17

P17, Q1718

P18, Q18

19

30

29

28

P30, Q30

P29, Q29

P28, Q28

34

31

33

32

P34, Q34

P33, Q33

P32, Q32

P31, Q31

20 21 242322 2625

P25, Q25 P26, Q26P23, Q23 P24, Q24P21, Q21 P22, Q22P19, Q19 P20, Q20

27

P27, Q27



 
  

 
 

P a g e 13 | 25 

6 – 17 0,179 0,050 17 230,00 142,50 

17 – 18 0,164 0,046 18 230,00 142,50 

18 – 19 0,213 0,047 19 230,00 142,50 

19 – 20 0,194 0,043 20 230,00 142,50 

20 – 21 0,194 0,043 21 230,00 142,50 

21 – 22 0,262 0,045 22 230,00 142,50 

22 – 23 0,262 0,045 23 230,00 142,50 

23 – 24 0,314 0,054 24 230,00 142,50 

24 – 25 0,210 0,036 25 230,00 142,50 

25 – 26 0,131 0,023 26 230,00 142,50 

26 – 27 0,105 0,018 27 137,00 85,00 

7 – 28 0,157 0,027 28 75,00 48,00 

28 – 29 0,157 0,027 29 75,00 48,00 

29 – 30 0,157 0,027 30 75,00 48,00 

10 – 31 0,157 0,027 31 57,00 34,50 

31 – 32 0,210 0,036 32 57,00 34,50 

32 – 33 0,157 0,027 33 57,00 34,50 

33 – 34 0,105 0,018 34 57,00 34,50 

 

Specific tasks to solve the optimization problem by using the metaheuristic optimization procedure: 

• Formulate the optimization problem (expressions for the objective function and constraints) 

• Coding decision variables in the method individual 

 

Solution: OpenDSS script in additional materials, Ploss = 217.5 kW, Vmin = 0.9399 p.u. in node b27. 

Self-exercise 2: 

• Add two distributed generation (DG) units of sizes P1 = 500 kW, Q1 = 150 kvar, P2 = 800 kW, 

Q2 = 400 kvar in network nodes 9 and 24. Compare total network losses to case without DGs. 

solution: OpenDSS script in additional materials, Ploss = 99.3 kW, Vmin = 0.9631 p.u. in node b27. 

• Add two distributed generation (DG) units of sizes P1 = 500 kW, Q1 = 150 kvar, P2 = 800 kW, 

Q2 = 400 kvar in network nodes 2 and 16. Compare total network losses to the case without 

DGs and DGs installed in nodes 9 and 24. solution: OpenDSS script in additional materials, Ploss 

= 198.2 kW, Vmin = 0.9427 p.u. in node b27. 

Co-simulation approach to metaheuristic optimizations in electric power 

system 

Using simulation tools for modeling and analyzing the power distribution networks is ordinary today. 

Modeling and calculations of the system using the specialized computing tools make able to make 

analysis with less neglecting and approximations in the model. Also, there are specialized computing 

tools for implementing metaheuristic optimizations. In the case of the calculating, some quantities in 

the system model by simulating them in simulation software the output data are obtained numerically 

without explicitly expressed relation between inputs and outputs. So, if some optimization of the 

power system wants to be done with obtaining objective values through simulations the metaheuristic 

algorithms are imposed as optimization methods due to their features (Tables 3.1 and 3.2). This 



 
  

 
 

P a g e 14 | 25 

approach in optimization is known as black-box optimization. The co-simulation setup between 

simulation tool for power system and metaheuristic optimization tool is set to perform this black-box 

optimization. The co-simulation approach makes able to do more accurate results due to more 

realistic modeling of the distribution power system in a specialized simulation tool. A general overview 

of such setup is shown in Figure 3.7. Main drawbacks of this approach are high computational time 

(due to a number of objective function and constraints calculations) and obtaining near to global 

optimum solutions. Also, the choice of the software tools will be co-simulated depends on tools 

features regarding interfacing with external software. Fortunately, most (especially open source) of 

the power system simulation tools has an interface to the most used programming environment for 

scientific and engineering calculations such are MATLAB, PYTHON, C++. Some of these programming 

tools such are MATLAB and PYTHON have built-in metaheuristic optimizations what makes them very 

suitable for co-simulation approach for solving complex optimization problems in the distribution 

networks. Apart from these built-in metaheuristic optimization tools, there are standalone tools 

especially in PYTHON, Java, C programming environments or that have an interface to these programs. 

Evolutionary algorithm 

tool (SciPy DE) performs 

optimization

Power system analysis 

tool (OpenDSS) performs 

power flow simulations

Interface

output data from optimization process are 

input data for power flow calculation

output data from power flow calculation  

are input data for optimization process

Interface
 

Figure 3.7: Co-simulation setup OpenDSS – SciPy DE 

OpenDSS – SciPy DE co-simulation 

The used co-simulation setup here includes SciPy Python package and OpenDSS power system 

simulation tool that co-work inside Python environment. Because SciPy package is Python native there 

is no need any procedure to interface it with Python. The OpenDSS has an interface to different 

programming languages as mentioned above. Interfacing OpenDSS to Python can be done in two 

ways: through COM interface or using OpenDSSdirect Python package [26]. Below procedure for 

interfacing OpenDSS with Python using COM interface is presented. 

The first access to OpenDSS COM from Python need to be established: 

import win32com.client 

dssObj = win32com.client.Dispatch(“OpenDSSEngine.DSS”) 

where “dssObj” is an instance of the main OpenDSS object and “OpenDSSEngine.DSS” is OpenDSS 

solution engine. 

After the main OpenDSS object is instantiated other instances to other model objects can be 

established, for example: 

dssText = dssObj.Text  # interface to text editing in the script 



 
  

 
 

P a g e 15 | 25 

dssCircuit = dssObj.ActiveCircuit  # interface to the circuit model 

dssSolution = dssCircuit.Solution  # interface to the solution method  

dssElem = dssCircuit.ActiveCktElement  # interface to model element 

Before starting with manipulation inside the OpenDSS model, the OpenDSS script needs to be 

compiled: 

dssText.Command = r"Compile 'E:\Google_Drive_on_E\ZNANSTVENO-

PhD\ZNANSTVENO\POSTDIPLOMSKI\ZNANST-RADOVI\2017\ELMAkonf-Sofija-

Bulgaria\PYTHON\IEEE13estLOAD.dss'" 

Performing a few above code lines in Python makes the preparation for handling network model built 

in OpenDSS from Python. 

In addition, each of the modeled network element reached from Python and its properties value can 

get or set: 

dssCircuit.Loads.Name = ‘L1’ # set load L1 as active load 

pf0 = dssCircuit.Loads.pf  # get load power factor value of L1 

dssCircuit.Loads.pf= 0.9*pf0  # set new pf value of L1 

After the wanted modifications in the OpenDSS script are done simulation can be started and results 

can be accessed from Python: 

dssSolution.Solve() # execute simulation 

loss = dssCircuit.Losses # get total network losses 

Stot = dssCircuit.TotalPower # get power injected from (in) reference node 

Vph = dssCircuit.AllBusVolts # get components in [V] of voltage phasors (complex form) for all 

network nodes 

Vpu = dssCircuit.AllBusVmagPU # get RMS values in [p.u] of nodal voltages 

Based on the above-given information of basic usage of OpenDSS and SciPy DE tools and their co-

simulation setup the optimization problem in the power distribution network (system) can be codded 

and solved in the used programming environment. 

Exercise 3: Optimal allocation of distributed generation (DG) in the distribution network 

Task 1: Using OpenDSS – SciPy DE co-simulation find the optimal allocation of DG in distribution 

network from Figure 3.6 (network data in Table 3.4). DG power limits are PDG  (0, 5000) kW, QDG  

(-2000, 2000) kvar. Use the OpenDSS script generated in Exercise 2. All modifications in the OpenDSS 

script do only from Python except adding DG unit (add it in OpenDSS script in any network node). 

Nodal voltage values required to be within the limits of 0.9 p.u. ≤ V ≤ 1.1 p.u. The problem objective 

is the minimization of total active power losses. (Tip: repeat the optimization procedure more time 

changing parameters of DE each time to find their values guarantee convergence of the solution near 

to the global optimum). 



 
  

 
 

P a g e 16 | 25 

Task 2: As Task 1 but with loads changing in time according to the dynamic given in Figure 3.8. 

Production of DG is required to be constant over time. 

 

Figure 3.8: Load shape in Task 2 (Exercise 3) 

Specific tasks to solve the optimization problem by using co-simulation approach: 

• Set COM interface to OpenDSS 

• Coding decision variables as DE individual 

• Add DG unit to prepared OpenDSS script through COM interface from Python 

• Formulate the optimization problem in black-box approach – function in Python including an 

interface to OpenDSS 

• Formulate and code constraints – simultaneously with coding the objective function 

• Defining ranges (limits) of the decision variables 

• Execute optimization and show results 

Solution: 

Add DG unit in OpenDSS script prepared in Exercise 2: 

New Generator.DG1 bus1=LOCd … 

DE individual can be formulated as ind = [DGL, DGP, DGQ] with decision variables of location, active and 

reactive powers of DG. So, this is a three-dimensional problem - 3 decision variables. 

Because SciPy DE works with continuous variables the first decision variable need to be coded as 

integer values represents the network node (location of the DG): 

DGL = round(ind[0]) 

Location represents position in bus list: 

BusN = [bus 1, bus2, … busN] 

It will be decoded to OpenDSS syntax as: 

LOCd = BusN[DGL] 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lo
ad

 m
u

lt
ip

lie
r

time [h]



 
  

 
 

P a g e 17 | 25 

dssText.Command = 'Edit generator.DG1' + ‘bus1='+LOCd+' kw='+str(ind[1])+' 

Kvar='+str(ind[2]) 

Solution of Task 1: Complete solution in form of OpenDSS and Python scripts can be found in additional 

materials, and optimal allocation is: bus b21, PDG = 2937 kW, QDG = 1800 kvar, PLOSS = 46.93 kW, Vmin 

=  0.9823 p.u. , Vmax = 0.9993 p.u. 

Solution of Task 2: Complete solution in form of OpenDSS and Python scripts can be found in additional 

materials, and optimal allocation is: bus b21, PDG = 2217.47 kW, QDG = 1358.77 kvar, PLOSS = 

[27.25349751651501, 30.15595202862467, 56.55781826046511] kW, ELOSS = [218.0279801321201, 

180.93571217174804, 565.5781826046511] kWh, ELOSST = 964.54 kWh, Vmin = [1.000, 0.9849, 0.9770]  

p.u. , Vmax = [1.016, 0.9994, 0.99907]p.u. 

Self-exercise 3: 

Solve Task 1 from exercise 3 with possible installation of 5 DG units. What is the optimal number of 

DGs?. Solution: OpenDSS script and PY scripts in additional materials, buses ['b21', 'b17', 'b25', 'b9', 

'b30'], PDG = [899.52, 916.98, 954.98, 796.53, 492.49] kW, QDG = [558.18, 557.77, 588.11, 495.09, 

307.61] kvar, PDGt = 4060.5 kW,  PLOSS = 3.71 kW, Vmin =  0.9979 p.u. , Vmax = 0.9998 p.u. 

Basics of multiobjective optimization 

Multiobjective optimization is defined as the optimization of a number of objectives simultaneously. 

Solving such optimization problem can be very challenging if objectives are conflicted what is ordinary 

in the case of multiobjective optimization problems (MOOP) [27]–[30]. The objective functions in case 

of MOOP are represented by the function vector consists of individual objective functions: 

min F(X)=[f1(X), f2(X), ⋯, fi(X), ⋯, fz(X) ]T 

Subject to: 

𝑔𝑗(𝑿)  0, 𝑗 = {1, … , 𝑚} 

ℎ𝑘(𝑿)  =  0, 𝑘 = {1, … , 𝑝} 

solution: 

𝑿 = [𝑥1,  𝑥2, ⋯ , 𝑥𝑟 , ⋯ , 𝑥𝑛]𝑻 

(3.6) 

The solution of MOOP is the solution set as opposed to the one solution in case of single optimization. 

When solution set is obtained decision maker can choose the optimal solution according to currently 

specific criteria. The MOOP solutions included in the solution set represent trade-off solutions 

between objectives in conflict with different levels of trade-off. 

The solution of the MOOP is based on Pareto definitions [31]. Some of the definitions are mentioned 

below. 

The MOOP solution set is often called the Pareto set and corresponding values of all objectives are 

called the Pareto front, Figure 3.8. 



 
  

 
 

P a g e 18 | 25 

x2

x1



f1

f2

L

X
a

X
b

X
d

F(X)

Y
a

Y
d

X
c

X
e

Y
c

Y
e

Y
b

PS
PF

X
a, Xb, Xc – non-dominated 

solutions

Y
a, Yb, Yc – objective values for non-

dominated solutions

Y
d, Ye – objective values for 

dominated solutions  

Figure 3.8: Pareto set and Pareto front for two objectives MOOP 

The procedure of solving MOOP in different optimization method use Pareto dominance defined as: 

  ( ) ( )

  ( ) ( )

1 2

1 2

1

1

i i

k k

i n : f dv f dv

k n : f dv f dv

   

  
 (3.7) 

According to (3.7) one solution from Pareto set is non-dominated by other solution if its objective 

values are equal or less than objective values for other solution and at least one objective values are 

less then the values for the other solution. Non-dominated solutions are more quality (“better”) than 

the dominated solution and all non-dominated solutions have the same solution quality in sense of 

the Pareto dominance definition. Such defined relations between solutions of MOOP are base for the 

so-called Pareto ranking method in MOOP. The fitness and sorting of solutions in metaheuristic 

optimization are based on the ranking sorting method given in Figure 3.9. 



 
  

 
 

P a g e 19 | 25 

1

f2

f1

1

1
1

1
1

1

2

2

2

2

3

3

3

3

4

Current Pareto 

front, the first 

rank solutions

Pareto front of the 

second rank

Pareto front of the third 

rank

 

Figure 3.9: Representation of ranking method in case of two objectives MOOP 

There are more metaheuristic optimization techniques such are [31]: 

• Vector Evaluated Genetic Algorithm (VEGA) 

• Niched Pareto Genetic Algorithm (NPGA) 

• Nondominated Sorting Genetic Algorithm (NSGA) 

• Strength Pareto Evolutionary Algorithm (SPEA) 

DEAP – Python package for multiobjective optimization 

There are tools for solving MOOP in different programming languages. In the Python programming 

environment, more different tools using metaheuristic optimizations are available such are DEAP, 

PyGMO, Platypus, pymoo [31]–[34]. Here DEAP is used as an example of solving MOOP. DEAP – 

distributed evolutionary algorithms in Python is very flexible tools allowing the user to develop 

costume EA by combining different evolutionary operators and methods.  

DEAP module is prepared for use with the next command in Python: 

import deap 

from deap import algorithms, base, creator, tools 

The first procedure in DAEP application is creating types of metaheuristic optimization parts: 

creator.create("FitnessMin", base.Fitness, weights=(-1.0,-1.0)) 

creator.create("Individual", list, fitness=creator.FitnessMin) 

These above two commands create fitness function as minimization of two objectives. Both objectives 

have weight 1.0 and minus (-) sign define minimization type of the problem (without – the 

maximization problem is defined). Individual of EA is declared to be “list” type (in form of Python list) 

and goodness of individual is based on before defined fitness function. 

Instantiate DEAP toolbox class is done by: 



 
  

 
 

P a g e 20 | 25 

toolbox = base.Toolbox() 

Now the type of decision variables responsible for the construction of EA individual can be defined by 

registration type of the individual: 

toolbox.register("dv1", random.randint, L1, U1) 

toolbox.register("dv2", random.random, L2, U2) 

The first decision variable (represents decision variable 1 of the problem) is the type of integer number 

(“random.randint”) in a range lower – upper variable limit (“L1-U1”, box constraints). The second 

decision variable is real-valued (variable of float type) inside its range. 

After all decision variables are registered the EA individual can be constructed as: 

toolbox.register("ind", tools.initCycle, creator.Individual, (toolbox.Nl, toolbox.Nn), n=1) 

The EA individual can be named arbitrary (“ind”). In this example, the individual is generated by 

successive repeating (“tools.initCycle”) n times (“n=1”) the defined sequence of the decision variables  

When EA individual in DEAP is constructed the population can be generated as follow: 

toolbox.register("population", tools.initRepeat, list, toolbox.ind) 

Name of the EA population is arbitrary (“population”) and the population will be populated with 

defined individuals (“toolbox.ind”) by generating the individual given times (“tools.initRepeat”). 

Now the population of size “nP” can be generated as: 

pop = toolbox.population(n=nP) 

The next step is registration of the EA operators, mutation, crossover and selection: 

toolbox.register("mate", tools.cxUniform, indpb = 0.5) 

toolbox.register("mutate", tools.mutPolynomialBounded, low=[L1, L2], up=[U1, U2], 

eta=20.0, indpb=0.05) 

toolbox.register("select", tools.selNSGA2) 

In above example recombination (“mate”) is preformed by uniform crossover type (“tools.cxUniform”) 

and crossover probability value is set to 0.5 (“tools.cxUniform”). The mutation operator 

(“tools.mutPolynomialBounded”) will generate feasible mutant inside decision variable range 

(“low=[L1, L2], up=[U1, U2],”). Each decision variable in individual has probability of mutation of 5% 

(“indpb=0.05”). Because the multi objective problem is considered here the DEAP selection operator 

based on the Pareto ranking is used (“tools.selNSGA2”) represents selection used in NSGA2 

optimization method. 

The objective function used by the DEAP optimization algorithm is registered as: 

toolbox.register("evaluate", OF) 

Where “OF” is the name of the problem objective function defined in the form of ordinary Python 

function. 

When all parts of the EA are defined the optimization procedure can be started: 



 
  

 
 

P a g e 21 | 25 

res, log = algorithms.eaMuPlusLambda(pop, toolbox, mu=toolbox.pop_size, 

lam=toolbox.pop_size, cxpb=1-toolbox.mut_prob, mutpb=toolbox.mut_prob, stats=None, 

ngen=nG, verbose=True) 

Type of the EA is defined by the name of the DAEP algorithm class (“algorithms.eaMuPlusLambda”). 

Here used (+) EA type includes the elitism principle (surviving the best individual through 

evaluation) by making population in the next generation for parents and offspring. With arguments 

“pop” and “toolbox” previously defined, EA population and operators are forwarded to the 

optimization algorithms. Number of parent “mu” and offspring (“lam”) individual can be defined here 

with “mu=toolbox.pop_size, lam=toolbox.pop_size”. In case it is needed the previously defined 

crossover and mutation probabilities can be changed (“cxpb=1-toolbox.mut_prob, 

mutpb=toolbox.mut_prob”). A maximal number of generation is defined as “ngen=nG” and storage of 

the evolution statistic can be enabled (or disabled) with “verbose=True”. 

A solution of the optimization problem after the optimization is finished can be simply obtained with: 

DVsol = np.array(res) 

Exercise 4: Optimal allocation of distributed generation (DG) in the distribution network 

for two objective optimization problem 

Task: Using OpenDSS – DEAP co-simulation find the optimal allocation of DG in distribution network 

from Figure 3.6 (network data in Table 3.4). DG power limits are PDG  (0, 5000) kW, QDG  (-2000, 

2000) kvar. Use the OpenDSS script generated in Exercise 2. All modifications in the OpenDSS script 

do only from Python except adding DG unit (add it in OpenDSS script in any network node). Nodal 

voltage values required to be within limits of 0.9 p.u. ≤ V ≤ 1.1 p.u. The problem objectives are the 

minimization of total active power losses and minimization of active DG power. Loads are constant 

over time. (Tip: repeat the optimization procedure more time changing parameters of EA each time 

to find their values guarantee convergence of the solution near to the global optimum). 

Specific tasks to solve the optimization problem by using co-simulation approach: 

• Set COM interface to OpenDSS 

• Coding decision variables as DEAP EA individual 

• Add DG unit to prepared OpenDSS script through COM interface from Python 

• Formulate the optimization problem in black-box approach – function in Python including an 

interface to OpenDSS 

• Formulate and code constraints – simultaneously with coding the objective function 

• Defining ranges (limits) of the decision variables 

• Execute optimization by using DEAP and show results 

Solution: 

Add DG unit in OpenDSS script prepared in Exercise 2: 

New Generator.DG1 bus1=LOCd … 

EA individual can be formulated as ind = [DGL, DGP, DGQ] with decision variables of location, active and 

reactive powers of DG. So, this is a three-dimensional problem - 3 decision variables. 

DG location represents position in bus list: 



 
  

 
 

P a g e 22 | 25 

LOC = [bus 1, bus2, … busN] 

It will be decoded to OpenDSS syntax as: 

LOCd = LOC[DGL] 

dssText.Command = 'Edit generator.DG1' + ‘bus1='+LOCd+' kw='+str(ind[1])+' 

Kvar='+str(ind[2]) 

Parts of EA should be coded for using DEAP based on the guidance given in previous subsection. 

Complete solution in form of OpenDSS and Python scripts can be found in additional materials, and 

optimal allocation is: optimal location in Pareto set are in busses b21, b22 and b23, PDG is in range 1.21-

2886.4 kW, QDG is in range 1522.97-1787.62 kvar, Ploss is in range 46.97-171.41 kW.   

Homework: 

• Solve Task from exercise 4 with the possible installation of 10 DG units. What are optimal 

allocations of DGs for edges of the Pareto front (minimal losses and maximal voltage profile 

flatness)? 

 

References as sources for further self-learning 

The examples of application metaheuristic application in power systems and electrical engineering as 

inspiration for further research can be found in [35]–[48]. Besides this, a number of sources of 

interests for this topic (metaheuristic methods, simulation tools, optimization in electrical system) are 

given through the previous sections and listed below in reference list. 

Reference list 

[1] R. Wehrens and L. M. C. Buydens, “Classical and Nonclassical Optimization Methods,” in 
Encyclopedia of Analytical Chemistry, 2006. 

[2] R. A. Meyers, “Classical and Nonclassical Optimization Methods Classical and Nonclassical 
Optimization Methods 1 Introduction 1 1.1 Local and Global Optimality 2 1.2 Problem Types 2 
1.3 Example Problem: Fitting Laser-induced Fluorescence Spectra 3 1.4 Criteria for 
Optimization 4 1.5 Multicriteria Optimization 4,” in Encyclopedia of Analytical Chemistry, 
Chichester: John Wiley & Sons Ltd, 2000, pp. 9678–9689. 

[3] O. Akkus and E. Demir, “COMPARISON OF SOME CLASSICAL AND META-HEURISTIC 
OPTIMIZATION TECHNIQUES IN THE ESTIMATION OF THE LOGIT MODEL PARAMETERS,” Int. J. 
Adv. Res, vol. 4, no. 10, pp. 1026–1042. 

[4] S. Bandaru and K. Deb, “Metaheuristic Techniques.” [Online]. Available: 
https://pdfs.semanticscholar.org/c28f/cda2bccc75b10e1d540031269e82a5d9c9b0.pdf?_ga=
2.130438726.859446823.1553504960-1592470437.1516282346. [Accessed: 20-Jan-2019]. 

[5] I. Fister, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A Brief Review of Nature-Inspired 
Algorithms for Optimization,” Elektroteh. Vestn., vol. 80, no. 3, pp. 1–7, 2013. 

[6] S. Binitha and S. Siva Sathya, “A Survey of Bio inspired Optimization Algorithms 138,” Int. J. Soft 
Comput. Eng. , vol. 2, no. 2, pp. 137–151, 2012. 



 
  

 
 

P a g e 23 | 25 

[7] J. Radosavljevic, Metaheuristic Optimization in Power Engineering. Institution of Engineering 
and Technology, 2018. 

[8] M. Gavrilas, “Heuristic and metaheuristic optimization techniques with application to power 
systems,” in Proceedings of the 12th WSEAS international conference on Mathematical 
methods and computational techniques in electrical engineering, 2010, pp. 95–103. 

[9] “Power Systems Analysis Software - Open Electrical.” [Online]. Available: 
https://wiki.openelectrical.org/index.php?title=Power_Systems_Analysis_Software. 
[Accessed: 28-Feb-2019]. 

[10] “EPRI | Smart Grid Resource Center &gt; Simulation Tool – OpenDSS.” [Online]. Available: 
http://smartgrid.epri.com/SimulationTool.aspx. [Accessed: 01-Mar-2019]. 

[11] “modeFrontier | www.esteco.com.” [Online]. Available: 
https://www.esteco.com/modefrontier. [Accessed: 21-Mar-2019]. 

[12] “HEEDS Design Exploration Software.” [Online]. Available: https://www.redcedartech.com/. 
[Accessed: 21-Mar-2019]. 

[13] “Global Optimization Toolbox - MATLAB.” [Online]. Available: 
https://www.mathworks.com/products/global-optimization.html. [Accessed: 08-Mar-2019]. 

[14] D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing 
Framework,” Evol. Comput., vol. 21, no. 2, pp. 231–259, May 2013. 

[15] “MIDACO-SOLVER.” [Online]. Available: http://www.midaco-solver.com/. [Accessed: 28-Mar-
2019]. 

[16] https://www.scipy.org, “SciPy.org — SciPy.org.” [Online]. Available: https://www.scipy.org/. 
[Accessed: 28-Feb-2019]. 

[17] “SciPy.optimize.” [Online]. Available: 
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html. [Accessed: 28-Jan-2019]. 

[18] “scipy.optimize.differential_evolution — SciPy v1.2.1 Reference Guide.” [Online]. Available: 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.
html. [Accessed: 03-Jan-2019]. 

[19] “EPRI Home.” [Online]. Available: https://www.epri.com/#/?lang=en-US. [Accessed: 15-Jan-
2019]. 

[20] R. Dugan and D. Montenegro, “OpenDSS manual,” 2018. [Online]. Available: 
https://sourceforge.net/projects/electricdss/files/OpenDSS/OpenDSSManual.pdf/download. 
[Accessed: 03-Mar-2019]. 

[21] “OpenDSS / Code / [r2573] /trunk/Distrib/Doc.” [Online]. Available: 
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/. [Accessed: 07-
Mar-2019]. 

[22] “OpenDSS / Code / [r2573] /trunk/Distrib/Doc/OpenDSS Solution Interface.pdf.” [Online]. 
Available: 
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSS Solution 
Interface.pdf. [Accessed: 07-Mar-2019]. 

[23] “OpenDSS / Code / [r2573] /trunk/Distrib/Doc/OpenDSS Cheatsheet.pdf.” [Online]. Available: 
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSS 



 
  

 
 

P a g e 24 | 25 

Cheatsheet.pdf. [Accessed: 07-Mar-2019]. 

[24] “OpenDSS / Code / [r2573] /trunk/Distrib/Doc/OpenDSS Circuit Interface.pdf.” [Online]. 
Available: 
https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSS Circuit 
Interface.pdf. [Accessed: 07-Mar-2019]. 

[25] “OpenDSS-G download | SourceForge.net.” [Online]. Available: 
https://sourceforge.net/projects/dssimpc/. [Accessed: 25-Feb-2019]. 

[26] “OpenDSSDirect.py 0.3.1.” [Online]. Available: https://dss-extensions.org/OpenDSSDirect.py/. 
[Accessed: 19-Mar-2019]. 

[27] J. Andersson, “A survey of multiobjective optimization in engineering design,” 2000. 

[28] “EMOO Home Page.” [Online]. Available: http://neo.lcc.uma.es/emoo/. [Accessed: 09-Jan-
2019]. 

[29] L. S. de Oliveira and S. F. P. Saramago, “Multiobjective optimization techniques applied to 
engineering problems,” J. Brazilian Soc. Mech. Sci. Eng., vol. 32, no. 1, pp. 94–105, Mar. 2010. 

[30] M. O. W. Grond, N. H. Luong, J. Morren, and J. G. Slootweg, “Multi-objective optimization 
techniques and applications in electric power systems,” in 2012 47th International Universities 
Power Engineering Conference (UPEC), 2012, pp. 1–6. 

[31] “pymoo.” [Online]. Available: https://www.egr.msu.edu/coinlab/blankjul/pymoo/. [Accessed: 
19-Jan-2019]. 

[32] “DEAP documentation — DEAP 1.2.2 documentation.” [Online]. Available: 
https://deap.readthedocs.io/en/master/. 

[33] “Pagmo &amp; Pygmo — pagmo 2.11 documentation.” [Online]. Available: 
https://esa.github.io/pagmo2/. [Accessed: 01-Mar-2019]. 

[34] “Platypus - Multiobjective Optimization in Python — Platypus documentation.” [Online]. 
Available: https://platypus.readthedocs.io/en/latest/. [Accessed: 29-Jan-2019]. 

[35] X.-S. Yang, Ed., Nature-Inspired Algorithms and Applied Optimization, vol. 744. Cham: Springer 
International Publishing, 2018. 

[36] X.-S. Yang and X. He, “Nature-Inspired Optimization Algorithms in Engineering: Overview and 
Applications,” 2016, pp. 1–20. 

[37] M. Barukčić, Ž. Hederić, and T. Benšić, “Analytical estimation of switched reluctance motor flux 
linkage profile by using evolutionary algorithm and numerical simulations,” J. energy Technol., 
vol. 10, no. 2, pp. 19–34, Jun. 2017. 

[38] M. Barukcic, M. Zgela, and D. Buljic, “The Python-OpenDSS co-simulation for the evolutionary 
multiobjective optimal allocation of the single tuned passive power filters,” in 2017 
International Conference on Smart Systems and Technologies (SST), 2017, pp. 209–215. 

[39] F. Halak, T. Bensic, and M. Barukcic, “Induction motor variable inductance parameter 
identification,” in 2017 International Conference on Smart Systems and Technologies (SST), 
2017, pp. 315–320. 

[40] N. B. Raicevic, S. R. Aleksic, Ž. Hederic, M. Barukcic, and I. Iatcheva, “Optimal selection of coaxial 
ring systems in environmental electrostatic shielding,” COMPEL - Int. J. Comput. Math. Electr. 
Electron. Eng., vol. 37, no. 4, pp. 1418–1435, Jul. 2018. 



 
  

 
 

P a g e 25 | 25 

[41] M. Barukči´, B.-S. Nikolovski -Franjo, and J. Jovi´c, “HYBRID EVOLUTIONARY-HEURISTIC 
ALGORITHM FOR CAPACITOR BANKS ALLOCATION,” J. Electr. Eng., vol. 61, no. 6, pp. 332–340, 
2010. 

[42] M. Barukčić, Ž. Hederić, and M. Hadžiselimović, “Determination of optimal capacitor bank 
allocation by an adapted evolutionary algorithm with use of constraint fuzzification,” J. Energy 
Technol., vol. 4, no. 1, pp. 23–38, Jan. 2008. 

[43] M. Barukcic, P. Maric, and S. Nikolovski, “Applying an evolutionary strategy for multiobjective 
optimization of capacitor banks allocation in distribution feeders,” in Eurocon 2013, 2013, pp. 
1262–1269. 

[44] M. Barukcic, Z. Hederic, and K. Miklosevic, “Multi objective optimization of energy production 
of distributed generation in distribution feeder,” in 2014 IEEE International Energy Conference 
(ENERGYCON), 2014, pp. 1325–1333. 

[45] M. Barukčić, Ž. Hederić, and Ž. Špoljarić, “The estimation of I – V curves of PV panel using 
manufacturers’ I – V curves and evolutionary strategy,” Energy Convers. Manag., vol. 88, pp. 
447–458, Dec. 2014. 

[46] D. Bilandžija, M. Barukčić, and V. Ćorluka, “Using an Evolutionary Algorithm for Harmonic Load 
Modeling by Norton and Thevenin Equivalents,” Int. J. Electr. Comput. Eng. Syst., vol. 5, no. 2, 
pp. 39–45, Apr. 2015. 

[47] M. Barukcic, M. Vukobratovic, and T. Bensic, “Evolutionary optimization approach for 
performing interval power flow considering uncertainties in electric power systems,” in 2016 
International Conference on Smart Systems and Technologies (SST), 2016, pp. 185–190. 

[48] M. Barukcic, M. Vukobratovic, D. Masle, D. Buljic, and Z. Herderic, “The evolutionary 
optimization approach for voltage profile estimation in a radial distribution network with a 
decreased number of measurements,” in 2017 15th International Conference on Electrical 
Machines, Drives and Power Systems (ELMA), 2017, pp. 26–31. 

 


