

Training in Electrical Engineering Discipline Modelling and Simulation in Electrical Engineering

Day 4 Modelling and Simulation of Power Electronic Converters

Denis Pelin, full proffessor ; P9 FERIT Andrej Brandis, assistant, P9 FERIT

Osijek; 4th, April 2019

Modelling and Simulation of Power Electronic Converters

• install device that will allow to connect these two, by some characteristics, different systems.

• these devices are called *power electronic converters*, and the electrical engineering branch that deals with the design of these devices, and the study of their interaction with both systems, are named as *converter technique*.

Basic converters division regarding frequency as leading characteristic of the systems are:

- rectifier
- invereter

U,

- DC/DC_i converter

i_d

 u_d

E

Chosen power converter topologies

DC/DC converter: Boost converter topology (modeling and steady-state analysis)

Rectifier: Single phase diode rectifier in bridge topology with capacitive load (modeling)

Inverter: Single-phase autonomous voltage inverter in H-bridge topology with inductive load (modeling)

Modelling and Simulation of Power Electronic Converters

Erasmus+

- Boost converter topology MODELLING AND STEADY STATE ANALYSIS- Numerical approach
- physical realisation of the boost converter

modulation control circuit.

■MC34060 subsystems: 'oscillator, 2 error amp, PWM comparator, undervoltage lockout, reference regulator.

Block diagram of MC34060

- Boost converter topology MODELLING AND STEADY STATE ANALYSIS- Numerical approach
- equivalent circuit of the boost converter by taking in consideration MC34060 subsystems

	input A	input B	input C	output
	0	0	0	1
	0	0	1	0
	0	1	0	0
1	0	1	1	0
	1	0	0	0
	1	0	1	0
		1	0	0
	1	1	1	0

switching condition

input C	output
0	1
1	0

- Boost converter topology MODELLING AND STEADY STATE ANALYSIS- Numerical approach
- Functional diagram for writing state equation

• When $u_{\text{ramp}} \ge u_i$, the controlled switch V_1 is in the ON-state and the diode V_2 is in the OFF-state. The state equations are: $du_c = 1$

$$\frac{du_C}{dt} = \frac{1}{CR_d} u_C$$
$$\frac{di_L}{dt} = \frac{1}{L} \left(E - Ri_L \right)$$

 $\frac{di_L}{dt} = \frac{1}{L} \left(E - Ri_L - u_C \right)$

 $u_{i} \quad u_{i} = \frac{-R_{4}}{R_{5}}U_{ref} + \left(1 + \frac{R_{4}}{R_{5}}\right) \cdot \frac{R_{2}}{R_{1} + R_{2}}u_{C}$

FERIT

 $u_{ramp} = \frac{3}{T}t + 0.7$

• When $u_{ramp} < u_i$, $i_L > 0$, the controlled switch V_1 is in the OFF-state and the diode V_2 is in the ON-state. The state equations are: $\frac{du_C}{dt} = \frac{1}{C} \left(i_L - \frac{u_C}{R_d} \right)$

 R_4

 \mathbf{R}_2

• for discontinuous operation mode 3rd interval is determined:

• When $u_{\text{ramp}} < u_i$, $i_L=0$, the controlled switch V_1 and the diode V_2 are in the OFF-state. The state equations are: $\frac{du_C}{dt} = \frac{1}{CR_d}u_C$

$$i_L = 0$$

- Boost converter topology MODELLING AND STEADY STATE ANALYSIS- Numerical approach
- Numerical integration method choose
- The fourth-order Runge-Kutta method of numerical integration with the fixed step size of integration h=20 ns was used. Period -two operation

54

t/T

55 56

57 58

51 52 53

Period doubling route to chaos is identified

57 58

54

t/T

- Boost converter topology MODELLING AND STEADY STATE ANALYSIS- Numerical approach
- Simulation tools for identification different steady-state responses

Modelling and Simulation of Power Electronic Converters

Boost converter topology – MODELLING AND STEADY STATE ANALYSIS- Numerical

approach

Bifurcation diagram-INSIGHT INTO THE STEADY-STATE RESPONSES

Steady state responses	values	values
Period-one operation	14-17.9	14-18.2
Period-two operation	17.9-19.7	18.2-19.8
Period-four operation	19.7-20	19.8-20.2
Period-eight operation	-	20.2-20.3
Chaos	20-21.8	20.3-21.8
	21.9-24	21.9-24
Period-three operation	21.8-21.9	21.8-21.9

Modelling and Simulation of Power Electronic Converters

Single phase diode rectifier in bridge topology with capacitive load- MODELLING

*IEC 725:1981 Considerations on reference impedances for use in determining the disturbance characteristics of household appliances and similar electrical equipment, International Electrotechnical Commission, Geneva, 1981

Modelling and Simulation of Power Electronic Converters

Single phase diode rectifier in bridge topology with capacitive load- MODELLING

Erasmus+

Modelling and Simulation of Power Electronic Converters

Erasmus+

FERIT

Modelling and Simulation of Power Electronic Converters

Erasmus+

